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ABSTRACT 

Spectral testing is widely used to test the dynamic linearity performance of 

Analog-to-Digital Converters (ADC) and waveform generators. Dynamic specifications 

for ADCs are very important in high speed applications such as digital communications, 

ultrasound imaging and instrumentation. With improvements in the performance of 

ADCs, it is becoming an expensive and challenging task to perform spectral testing 

using standard methods due to the requirement that the test instrumentation environment 

must satisfy several stringent conditions.   In order to address these challenges and to 

decrease the test cost, in this dissertation, three new algorithms are proposed to perform 

accurate spectral testing of ADCs by relaxing three necessary conditions required for 

standard spectral testing methods. The testing is done using uniformly sampled points. 

The first method introduces a new fundamental identification and replacement 

(FIRE) method, which eliminates the requirement of coherent sampling when using the 

DFT for testing the spectral response of an ADC. The robustness and accuracy of the 

proposed FIRE method is verified using simulation and measurement results obtained 

with non-coherently sampled data. 

The second method, namely, the Fundamental Estimation, Removal and Residue 

Interpolation (FERARI) method, is proposed to eliminate the requirement of precise 

control over amplitude and frequency of the input signal to the ADC. This method can 

be used when the ADC output is both non-coherently sampled and clipped. Simulation 

and measurement results using the FERARI method with non-coherently sampled and 

clipped outputs of the ADC are used to validate this approach. 



www.manaraa.com

vii 

 

 

A third spectral test method is proposed that simultaneously relaxes the 

conditions of using a spectrally pure input source and coherent sampling. Using this 

method, the spectral characteristics of a high resolution ADC can be accurately tested 

using a non-coherently sampled output obtained with a sinusoidal input signal that has 

significant and unknown levels of nonlinear distortion.  Simulation results are presented 

that show the accuracy and robustness of the proposed method.  

Finally, the issue of metastability in comparators and Successive Approximation 

Register (SAR) ADCs is analyzed. The analysis of probability of metastability in SAR 

ADCs with and without using metastable detection circuits is provided. Using this 

analysis, it is shown that as the frequency of sampling clock increases, using a 

metastable detection circuit decreases the probability of metastability in SAR ADCs.  
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CHAPTER I 

INTRODUCTION 
 

In this dissertation, methods for accurate spectral testing with relaxed 

requirements on test setup instrumentation are presented. The proposed methods are 

compared with standard test methods such as the IEEE standard that is widely used 

throughout the industry, windowing techniques, and the four parameter sine fitting 

method.  It is shown that the proposed methods can accurately perform spectral testing 

even after relaxing some of the stringent (and expensive) conditions that are required for 

standard testing approaches. The methods are applicable for high performance Analog-

to-Digital Converter (ADC) testing and high performance waveform generator testing. In 

the next three chapters, three methods are presented that perform spectral testing with 

accuracy and efficiency. 

In this chapter, motivation to perform low-cost testing is provided followed by an 

overview of the IEEE standard method to perform spectral test. The challenges involved 

in performing spectral testing of high performance ADCs and a brief summary about the 

organization of this dissertation are presented. 

 

I. MOTIVATION 

Modern device technology requirements and advancements in semiconductor 

processing technologies are causing the density of gates in a silicon wafer to 

continuously grow at a rapid rate.  This rapid growth is widely viewed as the trend in the 

semiconductor industry predicted by Moore’s law. This enables designers to 
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economically and efficiently design a system with several high-complexity functional 

blocks on a single chip, often called System-on-Chip (SoC) [1].  The performance of 

stand-alone parts has also been increasing with developments in semiconductor 

technology. However, this increase in performance of stand-alone parts and increases in 

size and complexity in the design of SoCs has introduced several significant challenges 

for testing the parts or systems. 

Production testing of stand-alone parts is performed to examine if the part meets 

a set of design specifications or performance requirements. The part is marked as a good 

part or a bad part depending on the positive or negative outcome of the production test. 

With increases in the performance of stand-alone parts, it is becoming a challenge to 

economically procure high accuracy test equipment to perform conventional tests. 

Paralleling this challenge are dramatic increases in the cost of testing. Therefore, there is 

an imminent need to develop new test methods that can reduce test costs by using low-

end measurement setups to accurately test high performance parts. 

SoCs are gaining popularity and becoming more favorable for production as they 

decrease the design cost by allowing the whole system to be designed on a single chip. 

SoCs are typically comprised of several complex sub circuits and it is usually essential 

to individually test all sub circuits in the system to guarantee the specified system 

performance. It is challenging to de-embed each block separately for testing the sub 

circuits on the SoC due to dense integration and local loading and this further leads to 

increases in test costs. One solution to testing SoCs cost effectively is to use Built-in 

Self-Test (BIST) circuits. When BIST is employed, the test circuitry is also present on 
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the same chip as the Device under Test (DUT). With a BIST solution, the challenges 

associated with de-embedding each block can be reduced or eliminated. However, 

economical constraints dictate that the test circuitry in BIST circuits should have 

negligible area compared to that of the DUT. If conventional test methods are used in 

BIST circuits for testing analog functions, the test circuitry often must include high 

accuracy, spectrally pure, or high linear stimulus signal generators.  These high-

performance signal generators invariably necessitate a substantial design effort and 

require a large area. In some cases, the area required by the test circuitry could be more 

or even much more than that of the DUT.  In almost all applications, a large area 

requirement for BIST circuits would be unacceptable.  As a result, for BIST circuits to 

be practical, new test methods need to be developed that can relax the conditions on test 

setup measurement so that low-end measurement systems can be designed on-chip and 

still provide accurate test results. The International Technology Roadmap for 

Semiconductors also recognizes the need and suggested that more research needs to be 

done on BIST for analog and mixed-signal circuits.  

Analog-to-Digital Converters are one of the most widely used integrated circuits. 

They are not only used as stand-alone parts but are also widely used in the analog front 

end in SoCs [2]. ADCs are usually tested for static parameters such as Integral Non-

linearity (INL), Differential Non-linearity (DNL), offset, gain, etc. They are also tested 

for dynamic parameters such as Total Harmonic Distortion (THD), Spurious Free 

Dynamic Range (SFDR), Signal to Noise Ratio (SNR), etc. [3].  
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Conventional data converter testing methods have changed little over the past 

three decades.  When these testing methods evolved, the performance of the best ADCs 

available from industry was modest by today’s standards and the cost of computing 

equipment and computing time was very high.  As a consequence, a good testing 

solution at the time was based upon using a reasonably good signal generator and 

minimal post-processing of measurement data by a computer.  In the intervening three 

decades there have been dramatic changes in both performance and cost structures. The 

performance of ADCs has dramatically increased, the cost of high-end analog test 

equipment used to generate test signals for testing ADCs has increased dramatically, but 

the cost of computational equipment and computational operations has dropped at a 

much higher rate.  So, the question naturally arises, about whether new methods for 

testing high performance ADCs that are no longer constrained by the cost of 

computational equipment and computational operations can be developed that can 

modestly or even dramatically reduce the cost of testing high performance ADCs.    

To decrease the test cost of ADCs, new methods are needed that can decrease the 

measurement setup cost by relaxing the stringent conditions required for conventional 

instruments  used for testing ADCs and, if necessary, increasing or dramatically 

increasing the use of computational tools as a part of the testing flow.  In [4], a Stimulus 

Error Identification and Removal (SEIR) method was proposed that can relax the 

requirement of high linear stimulus to perform static Integral Nonlinearity (INL) and 

Differential Nonlinearity (DNL) linearity testing.  With the SEIR approach, a tradeoff 

was made between linearity of the stimulus signal and the number of computational 
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operations that can provide a dramatic overall reduction in test costs.   In this 

dissertation, work has been done to relax three stringent conditions (on the test setup) 

that are required to perform accurate dynamic spectral testing of  an ADC and these 

three conditions are the major contributors to the high test costs with conventional 

testing approaches.   Paralleling the relaxation of the performance requirements for the 

signal generator has been a significant increase in the computational complexity of the 

testing algorithm.  But as with the SEIR approach, the tradeoffs between test equipment 

specifications and computational time will provide a dramatic overall reduction in 

spectral testing costs in today’s environment.  

 It should be noted here that the focus in this dissertation on ADC testing has 

been chosen only for convenience. The same methods can also be used to perform 

spectral testing of waveform generators. 

Dynamic testing of ADCs is often called spectral testing or AC testing and 

includes testing of the ADCs dynamic (frequency dependent) specifications. In contrast, 

full spectrum testing not only tests dynamic specifications but also focuses on testing all 

spectral bins including harmonic and non-harmonic bins. Being able to perform full 

spectrum testing is especially important for systems whose Spurious Free Dynamic 

Range (SFDR) is limited by non-harmonic spurious tones, such as time-interleaved 

ADCs. The test setup for both spectral test and full spectrum test is the same. 
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II. IEEE STANDARD ADC SPECTRAL TEST 

The IEEE standard for Digitizing Waveform Recorders (IEEE Std. 1057) [5] and 

IEEE standard for Terminology and Test Methods for Analog-to-Digital Converters 

(IEEE Std. 1241) [6] specifies that the test setup should satisfy the following five 

conditions for accurately performing the spectral testing of ADCs. Firstly, the spectral 

purity of the input signal to ADC should be about 3 to 4 bits more pure than the ADC 

under test. In other words, to test an N-bit ADC, the input signal should be more than 

N+3 bits pure. The second condition is that the peak-to-peak voltage of the input signal 

should be slightly lower than the ADC input range so that the output of the ADC is not 

clipped. The third condition is to have very low relative jitter between the clock and 

input signals. The fourth condition is that, if possible, the input signal be coherently 

sampled. Finally, the total number of sampled points (or data record length) should be 

sufficiently large. 

Fig. 1.1 shows the recommended test setup for standard spectral testing of an N-

bit ADC. The setup consists of a master clock that controls the frequency of both the 

clock signal and the input signal. This can provide coherent sampling. Occasionally, there 

is a filter present between the input signal source and the ADC under test. The filter is 

added to improve the spectral purity of the input signal to the ADC. The amplitude of the 

input signal is selected such that the peak-to-peak value of input to ADC is within the 

ADC input range. Care is also taken to obtain very small relative jitter between the input 

and clock signals using low jitter clock generators. Using this setup, the output of ADC is 
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acquired and analyzed for spectral parameters of the ADC under test. In this section, it is 

considered that all the above conditions are satisfied. 

Let fSig be the frequency of input signal, fSamp be the clock frequency, M be the 

total number of data points recorded to measure the spectral characteristics and J be the 

total number of periods of the input signal sampled in the recorded data. The four 

parameters are related by equation (1.1). 

Sig

Samp

f
J M

f
                                                             (1.1) 

Clock generator

Input Signal generator
( frequency synthesizer )

ADC 
under 
test

Data analysis

N-bit

fsamp

fSig

Master 
Clock

Filter
x(t)

x[n]

Required

Optional

 

Figure 1.1: Setup to test ADC Spectral characteristics 

 

The sampling is said to be coherent if J in (1.1) is an integer that is co-prime with 

M and non-coherent if J is a non-integer. In addition, it is recommended that J > 5 [6]. 

It is recommended to perform coherent sampling to accurately test an ADC. Fig. 

1.2 shows the spectrum of an example ADC when sampled coherently. It can be seen 

from Fig. 1.2 that the spectrum is clean and all the spectral parameters such as, THD, 

SFDR and SNR, can be accurately estimated as explained below. 
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Figure 1.2: Power Spectrum of a coherently sampled ADC Output 

 

Assume x(t) is the time domain representation of the analog input signal. The 

signal is ideally a pure sine wave and is given by equation (1.2). 

   cos 2 Sigx t A f t                                                        (1.2) 

where, A is the amplitude of x(t). 

Let x[n] be the analog interpretation of the digital output obtained from the ADC 

whose gain error and offset have been calibrated. x[n] can be represented by (1.3). 

 
2

2 2
[ ] cos cos

H

h h

h

J hJ
x n A n A n w n

M M

 
 



   
       

   
                         (1.3) 

for n = 0,1,2,….,M-1. ϕ is the initial phase of the sampled x(t). M is usually selected to 

be a power of 2 for faster processing of the  Discrete Fourier Transform (DFT) with the 

Fast Fourier Transform (FFT) algorithm. H is the total number of harmonics considered 

in x[n], Ah and h  are the amplitude and initial phase of h
th

 harmonic respectively.  It is 

assumed  that Ah << A and h  ϵ [0,2π) for all 2 ≤ h ≤ H. w[n] corresponds to white noise 
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)
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in n
th

 sample which can be due to quantization noise, input referred ADC noise and 

additive noise in the input signal. The harmonics in the output of ADC, x[n], are 

attributable to the distortion of ADC. Actually, there are an infinite number of 

harmonics. But, for analysis purposes,  only the first H harmonics are considered 

throughout this dissertation. This is a justifiable assumption since the higher order 

harmonics in a real ADCs usually have negligible power. 

The spectral parameters can be accurately obtained by taking DFT of M 

coherently sampled data points. The DFT of x[n] is given by equation (1.4). 

 
21

0

1
,  0,1,2,..., 1

kM j n
M

k

n

X x n e for k M
M

 



                                (1.4) 

where k represents the frequency bin’s index. For example, with coherent sampling, k = 

h*J represents the frequency bin of the h
th

 harmonic and if h = 1, k = J represents the 

frequency bin of the fundamental. X0 corresponds to the DC component in signal x[n]. 

Other values of k correspond to noise. 

From equations (1.3) and (1.4), neglecting the effect of noise, Xk can be rewritten 

and given as (1.5). 
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 

     
 

  

  
 

     
 

  

2

sin sin

2
sin sin

sin sin

2
sin sin

h h

j a J k j a J k

k

H
j a hJ k j a hJ kh

h
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e e

M J k J k

M M
X
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e e
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 

    
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
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  
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                 

  
  
       
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          



     (1.5) 

It can be seen from (1.5) that, for coherent sampling, 

   and   
2 2

hjj h
J hJ

AA
X e X e

                                           (1.6) 

For other values of k, Xk represents the noise as there is no contribution from the 

fundamental and harmonics on the bins if the M points are coherently sampled. The 

power of fundamental, h
th

 harmonic and noise in coherently sampled data can be 

accurately estimated as P1, Ph and Pnoise respectively using (1.7), 

22 1
2 2 2

1

1
,

2,3,..,

2 ;       2 ;      
2 2

M
h

J h hJ noise k

k
k J hJ
h H

AA
P X P X P X







                        (1.7) 

From (1.7), the spectral parameters such as THD, SNR and SFDR for a 

coherently sampled signal can be calculated using equations in (1.8). 

 
2 1 1

2
1

1,.., /2

;     ;     
2* max

H

h

h

noise k
k M
k J

P
P P

THD SNR SFDR
P P X






  


                       (1.8) 
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The equations (1.6-1.8) give accurate values of spectral parameters. Also, since 

the power of each frequency bin can be obtained accurately, this coherent sampling 

method can be used for full spectrum testing. 

The challenges in performing high performance ADC spectral test using standard 

methods are discussed in the following section. 

 

III. CHALLENGES IN ADC SPECTRAL TEST 

As mentioned in section I, there are five conditions that need to be satisfied to 

perform standard ADC spectral testing. It can be said that the first four conditions are 

challenging to achieve as the performance of ADC continuously increases. 

The first condition is to use a very highly pure sinusoid signal source as input to 

the ADC under test. This condition requires either new methodologies to design highly 

pure signal sources or several filters to suppress the unwanted harmonics. Both  

solutions lead to high test cost. Also, as noted earlier, for BIST ADCs, the area required 

to design highly linear signal sources could be very large leading to high costs. 

The second condition is to be able to control the amplitude so that the peak-to-

peak voltage of the input signal is within the input range of the ADC. This condition 

could be a challenging task in BIST circuits as precise control over amplitude of the 

signal is not possible. With trend shifting towards designing BIST ADCs, it is important 

to be able to test the ADC characteristics from clipped output data. 
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The next condition is to have minimal relative jitter between the input signal and 

the clock signal. This requires high accuracy clock and signal generators, which could 

increase the test cost with increase in ADC performance.  

The fourth condition is to sample the input signal coherently. Achieving coherent 

sampling is one of the major bottlenecks in performing spectral testing. In order to 

achieve coherent sampling, it is required to use high accuracy signal generators or Phase 

Locked Loops (PLL). This results in additional hardware which adds to the total ADC 

test cost. Also, in BIST applications, it is impractical to achieve coherent sampling as 

PLLs or high accuracy frequency synthesizers cannot be economically designed on-chip 

(as they increase the test circuitry area which results in additional cost). 

In order to decrease the production test cost and to make BIST ADCs practical, it 

is required to design new test methods that can relax the above stringent conditions to 

perform accurate ADC spectral test. In this dissertation, three methods are proposed to 

relax some of the aforementioned challenging conditions for ADC spectral test. 

 

IV. DISSERTATION ORGANIZATION 

Three new test methods that address the aforementioned challenges to perform 

spectral testing are presented in this dissertation. As mentioned earlier, the methods can 

be applied to test high performance ADCs or high performance waveform generators. 

These methods can be used either in production testing or in BIST applications to 

decrease the test cost. The dissertation is arranged in the following order. 
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In Chapter 2, a method called the Fundamental Identification and Replacement 

(FIRE) method is presented.  With FIRE, the requirement of coherent sampling to 

perform accurate ADC spectral testing [7-10] is completely eliminated.  A new approach 

to identify the fundamental in a non-coherently sampled data set using frequency domain 

data and Newtons method is proposed.  Though non-coherent, the samples must be 

uniformly spaced. The validity of the method is shown using measurement data from 

commercially available high resolution ADCs. The use of this method can decrease the 

test costs associated with achieving coherent sampling. 

In Chapter 3, the Fundamental Estimation, Removal And Residue Interpolation 

(FERARI) method is presented [11-12]. This method simultaneously relaxes the 

requirement to have precise control over amplitude and frequency of the input signal in 

order to test ADCs. A new fundamental estimation technique is proposed that can be 

used when the ADC output is clipped and is sampled non-coherently with uniform 

spacing. Measurement results are provided to validate this method using a commercially 

available 16-bit ADC. The method can be used in BIST applications as precise 

amplitude and frequency control is costly to achieve in such systems. 

In Chapter 4, a method of relaxing the conditions of using a spectrally pure 

sinusoidal input source and simultaneously removing the requirement of coherent 

sampling is proposed [13-14]. The sampled points need to be uniformly spaced. The 

non-linear (impure) input that is non-coherently sampled is first characterized using a 

“Golden ADC”. Later, the same input signal is used to test high resolution ADCs 

accurately. This method is explained in detail in this chapter. The simulation results 
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show accurate functionality and robustness of the proposed method. This method can be 

used to decrease the test cost in production testing, where acquiring a source with high 

spectral purity  and obtaining coherent sampling result in high test costs. 

In chapter 5, the work done on Metastability in comparators and ADCs is 

discussed [15]. A rigorous mathematical definition of metastability is presented. The 

probability of metastability is analyzed and compared for two comparator architectures, 

one with a latch and the other with a latch followed by an inverter. The probability of 

metastability of synchronous SAR ADCs with and without using metastable detection 

circuit is analyzed and compared. The analysis can be used to decide if a metastable 

detection circuit is necessary to decrease the probability of metastability in SAR ADCs. 
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CHAPTER 2 

FIRE: A FUNDAMENTAL IDENTIFICATION AND 

REPLACEMENT METHOD FOR ACCURATE SPECTRAL 

TEST WITHOUT REQUIRING COHERENCY  
 

Achieving coherent sampling is one of the major bottlenecks to perform ADC 

spectral test, especially when high-precision instruments or high-performance frequency 

synthesizes are not readily available. If coherent sampling is not achieved, there could be 

huge leakage in the spectrum which might lead to inaccurate test results. In this chapter, 

a new Fundamental Identification and Replacement method is presented that can 

completely eliminate the need for coherent sampling in spectral testing. A 2-step 

Fundamental Identification method is used to very accurately estimate the non-coherent 

fundamental. Extensive simulation results show the functionality and robustness of the 

method. Measurement results obtained in industry labs using commercially available 

high resolution ADCs successfully validate the proposed method for both accuracy and 

robustness. 

 

I. INTRODUCTION 

In chapter 1, it was recommended to achieve coherent sampling to obtain 

accurate spectral results of an ADC. However, to achieve coherent sampling, it is 

required to obtain high accuracy frequency synthesizers and Phase Locked Loops (PLL). 

This results in increase in test cost and test area. 
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Another case is, during characterization of an ADC, the spectral characteristics of 

the ADC at various input frequencies need to be tested. It would take more test time to 

achieve coherent sampling in such cases as the frequencies of input signal and clock 

signal need to be tuned for each input frequency separately to achieve coherent 

sampling. This tuning increases the test cost and the product delivery time.  

Also looking into the future, there is a strong drive to design circuits that have 

Built-in Self-Test (BIST) capability to decrease the test cost. The area required by the 

testing circuitry should be very small compared to that of the Device under Test (DUT). 

In such circuits, it is impossible to achieve coherent sampling with a self-contained 

oscillator as signal source implemented on a very small area.  

In the above mentioned cases, it is either expensive or more time consuming or 

impossible to achieve coherent sampling. So, there is a strong need to develop new low 

cost test methods that can eliminate the condition of coherent sampling and still provide 

accurate spectral results. 

A. State of the art methods for Non-coherent sampling 

The state-of the-art methods proposed in the literature to perform accurate 

spectral test using non-coherently sampled data are discussed below. 

1) Windowing technique 

Windowing technique is one of the widely used methods to obtain spectral 

characteristics from a non-coherently sampled data [1-6]. To obtain accurate spectral 

results with windows, the spectral power of secondary lobes of selected window should 
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be lower than the noise power of the ADC under test. This requires prior knowledge 

about the type of window to be used to accurately test the ADC. If a window with power 

in secondary lobes greater than the noise floor of the ADC under test is used, inaccurate 

results of spectral parameters are obtained. As a result, the spectral characteristics 

obtained are window dependent. Also, for large non-coherent sampling and high 

resolution ADCs, not all windows can achieve accurate spectral results [7].  

2) Four parameter Sine Fitting technique 

The four parameter sine fitting method is used to characterize analog-to-digital 

converters and digital oscilloscopes for THD and ENOB [8-11]. In this method, the time 

domain data is used to identify the four parameters in the non-coherently sampled 

fundamental, namely, frequency (f), amplitude, offset and phase. Since the time domain 

data is a non-linear function of frequency (f), a non-linear method such as Newton 

method is used to identify the above four parameters. With this, the power of 

fundamental can be accurately estimated. Now, the identified fundamental is removed 

from the data to obtain the residue. Later, using the frequency value (f) obtained from 

four parameter sine fitting, a three parameter fit (amplitude, phase, offset) on the residue 

is performed for each harmonic component (with frequencies 2f, 3f, …). Once the 

powers of all harmonics are obtained, the spectral parameters such as THD and SNR can 

be estimated using equations (1.8). 

The four parameter sine fitting method gives accurate values of THD, SNDR and 

ENOB. Also, when the harmonic component determines SFDR, accurate value of SFDR 

is obtained. However, when a non-harmonic component determines SFDR as shown in 
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Fig. 2.1, the method cannot provide accurate value. In such cases, a method intended for 

full spectrum test is required. Furthermore, computational efficiency is one of the 

concerns when data record length is large. In [12], a multi-sine fitting algorithm was 

proposed to accurately estimate the fundamental and harmonics of the signal. However, 

the method also cannot provide accurate value of SFDR when a non-harmonic 

component has the highest power (excluding the fundamental) in the spectrum. 

 

Figure 2.1: Power Spectrum of a coherently sampled time-interleaved ADC showing 

non-harmonic spur 

 

3) Other state-of the-art methods 

In the recent past, several other methods have been proposed to relax the 

condition of coherency for spectral testing [13]. A 2-D FFT method was introduced in 

[14] with a time complexity of O (M
2
log

2
M), where M is the total data record length. A 

singular value decomposition method was proposed in [15] which involve a time 

complexity of O (M
3
). In [16], a filter bank method was reported which results in an 

increase in testing circuitry area. A resampling technique was presented in [17], which 
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again results in increasing area due to additional decimator used. In [18-22], 

interpolating DFT (IpDFT) methods were used to eliminate the requirement of 

coherency. However, such methods cannot provide accurate value of SFDR when a non-

harmonic spur dominates the harmonics. In [23], a fundamental identification and 

replacement method was proposed that can accurately estimate the spectral 

characteristics. However, the method is not robust to signal frequencies that are close to 

Nyquist range. 

All the above methods suffer from one or more of the issues such as, large 

computation time, increase in area, lack of robustness across the Nyquist range, 

dependency of results on the type of window chosen or the inability to perform full 

spectrum test. So, it is required to develop a test method that can address all the above 

issues and accurately perform spectral test without requiring coherent sampling. 

In [7], a Fundamental Identification and Replacement method was proposed that 

is robust over any level of non-coherency. The method provides accurate spectral results 

for ADCs with medium resolution. However, for very high resolution ADCs, the 

estimated spectral parameters have errors as the accuracy with which the fundamental 

was identified was not sufficient. 

In this chapter, a new fundamental identification and replacement (FIRE) method 

that addresses all the above issues and performs accurate spectral testing is presented. 

Compared to the method in [7], a new 2-step fundamental identification method that can 

very accurately estimate the fundamental is proposed. The initial estimates of parameters 

are obtained in Step 1 using closed form expressions. In Step 2, Newton method is used 
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to accurately estimate all the parameters. The estimation is done using the frequency 

domain data and is computationally efficient. The estimated non-coherent fundamental is 

later removed from the initial data to obtain the residue. A fundamental that is coherently 

sampled is added to the residue and DFT is performed on the final data to obtain 

accurate spectral results. The functionality and robustness of proposed FIRE method is 

verified using both simulation and measurement data. 

The remainder of the chapter is arranged as follows. The issue of Non-coherent 

sampling is described in Section II. Section III provides a detailed description of 

proposed FIRE method. Section IV presents the simulation results and Section V 

validates the FIRE method using measurement data. Section VI concludes the chapter. 

 

II. ISSUES WITH NON-COHERENT SAMPLING 

If the input signal is not coherently sampled, J in equation (1.3) is not an integer 

and as a result, the spectrum of such output data may contain severe skirting as shown in 

Fig. 2.2. This phenomenon is widely known as spectral leakage. 

From chapter 1, let x(t) in (1.2) be the pure input source to the ADC. If the input 

is non-coherently sampled by the ADC, the output of ADC can be given by equation 

(2.1) (similar to equation 1.3) after calibrating gain error and offset. x[n] is the analog 

representation of the n
th

 sampled digital output of ADC. All the parameters in (2.1) are 

similar to the parameters defined in chapter 1. x[n] is obtained after considering only the 

first H harmonics. It is assumed that the higher harmonics have negligible power. 
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Figure 2.2: Power spectrum of a non-coherently sampled ADC Output 
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It should be noted that J in (2.1) is no longer an integer. Let J = Jint + δ, where 

Jint represents the integer part of J and δ represents the non-integer part of J. δ varies 

from -0.5 to 0.5. The DFT of non-coherently sampled x[n] in (2.1) can be obtained using 

equation (2.2). Substituting non-integer J in (2.1) and (2.2), the k
th

 DFT coefficient, Xk, 

can be given as (2.3). 
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It can be seen that unlike in equation (1.5), the contribution from fundamental 

and harmonics on to other frequency bins is no longer zero in equation (2.3) due to the 

presence of non-integer δ. As a result, using equations (1.6-1.8) to test spectral 

characteristics of a non-coherently sampled data, results in inaccurate values. Such cases 
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of non-coherent sampling are very common and it is important to design a test method 

that can perform full spectrum Test in spite of having non-coherent sampling. 
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 (2.3) 

 

III. FUNDAMENTAL IDENTIFICATION AND REPLACEMENT (FIRE) 

METHOD 

 

In this section, a test method is proposed that can take in non-coherently sampled 

ADC output and perform full spectrum test. Before describing the method in detail, a 

brief description about the foundation for Fundamental Identification and Replacement 

methods [7, 23-26] is presented. 

It can be said that when DFT is applied on non-coherently sampled data, the 

leakage in the spectrum is mainly due to the fact that the fundamental component is non-

coherently sampled. It can also be stated that for high resolution ADC testing, the 

leakage from any frequency bin (other than the fundamental) to any other frequency tone 
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is significantly below the total noise power of the ADC. This effect of non-coherent 

fundamental is shown in Fig. 2.3 and Fig. 2.4. 

Fig. 2.3 is the spectrum of a non-coherently sampled data. As explained earlier, 

there is severe spectral leakage around the fundamental. However, it can be seen that if 

the non-coherent fundamental in this data is identified and removed, accurate 

information of harmonics and noise can be obtained from the spectrum of residue as 

shown in Fig. 2.4. So, it is required to accurately identify the non-coherent fundamental 

to obtain correct spectral results. 

 

Figure 2.3: Spectrum of FFT of non-coherently sampled data showing leakage 

 

 

Figure 2.4: Spectrum of residue obtained after removing the fundamental 
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A) Fundamental Identification 

Several methods were presented in the past to identify the fundamental in a non-

coherently sampled data [18-22, 27]. One of the proposed methods is the Interpolated 

Discrete Fourier Transform (IpDFT). The IpDFT methods start from applying windows 

on the non-coherently sampled data and later perform interpolation to accurately 

estimate the fundamental component [18-22]. In [22], a criterion to choose the optimal 

window to obtain accurate spectral characteristics was proposed. However, in the 

proposed FIRE method, the fundamental is identified from the DFT of non-coherently 

sampled data without using windows. As a result, the method is not dependent on 

windows and can accurately estimate the fundamental. 

Substituting J = Jint + δ in equation (2.1), in order to identify the fundamental in 

x[n], it is required to estimate the values of Jint, δ, A and ϕ. In the proposed FIRE 

method, the fundamental component is identified in a two-step process. First step 

provides the value of Jint and initial estimates of δ, A and ϕ from the DFT of non-

coherently sampled data. The second step obtains accurate estimates of δ, A and ϕ using 

Newton method. The procedure to identify the fundamental is explained in detail below. 

1) First Step 

The time domain output data of the ADC, x[n] in (2.1) is converted to 

frequency domain data by taking the DFT of x[n] which is given by Xk in equation (2.2). 

Using DFT coefficients, the value of Jint and initial values of δ, A and ϕ are estimated. 
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a) Estimate Jint and δ 

Jint is estimated by taking the index of frequency bin in half spectrum that 

contains the maximum power excluding the DC component and is given by (2.4). 

int

1 ( /2)

arg max k
k M

J X
 

                                                     (2.4) 

 The initial value of δ can be estimated with a three-point calibration method 

using the DFT coefficients. Using (2.3), for k = Jint, Xk represents the DFT coefficient of 

the fundamental and for k = Jint+1 and Jint-1, Xk represents the DFT coefficients of the 

adjacent bins on either side of the fundamental bin. For high resolution ADCs, when 

estimating the fundamental, the effect of harmonics can be neglected. Also, in order to 

obtain a closed form expression for initial value of δ, the term containing 
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can be neglected compared to the term containing 
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e
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for M > 1024 [28]. The 

neglected term is later considered in the equations to obtain an accurate estimate of δ in 

the second step. After neglecting the above mentioned terms, Xk can be given by (2.5). 
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Let Y = e
j2πδ

                                                                                                 (2.6) 

For k = Jint, Jint+1 and Jint-1, using (2.5) 

int

2

2 1/

1 1

2 2 1
1

j
j j

J M
j

M

A e A Y
X e e

M M Y
e


 



 
 




                                      (2.7) 



www.manaraa.com

28 

 

 

 int

2

1 22 1
1/

1 1

2 2
11

j
j j

J
jj M MM

A e A Y
X e e

M M
Y ee


 

  


 
 



                            (2.8) 

 int

2

1 22 1
1/

1 1

2 2
11

j
j j

J
jj M MM

A e A Y
X e e

M M
Y ee


 

  

 
 



                             (2.9) 

The above three equations can be used to solve for Y in terms of XJint, XJint+1 

and XJint-1. 
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From equations 2.6 & 2.10, the initial value of δ, δ0, can be estimated by 

(2.11) as 
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b) Estimate A and ϕ 

Now that Jint and δ are estimated, the initial values of A and ϕ can be 

estimated using (2.7). Taking magnitude of XJint gives the initial value of A, A0, as shown 

in equation (2.12). 
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The initial value of ϕ, ϕ0, can be estimated by using A0 and δ0 as shown in 

equation (2.13). 

0
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  

                                         (2.13) 

Hence, using equations (2.4, 2.11-2.13), Jint and the initial values of δ, A and 

ϕ are estimated. 

2) Second Step 

It can be noted that equation (2.5) involves an assumption to neglect

  intj a J k
e

    
 term. The error in estimating the value of δ for 1000 runs using this 

assumption is as shown in Fig. 2.5. It can be seen that the values of 1000 randomly 

selected δ’s were estimated with a maximum error of about 10
-4

. However, to perform 

high resolution ADC test, the estimation error should be very small. Also, in order to 

propose a method that is independent of the resolution of ADC, the error should only be 

limited by the noise power per bin (i.e., Pnoise/M). To obtain these requirements, it is 

necessary to include 
  intj a J k

e
    

term in estimating the three parameters δ, A and . 

The expression of XJint without neglecting 
  intj a J k

e
    

term is as shown below in 

(2.14). It can be shown that the expression is a non-linear equation in δ. Also, XJint can 
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be represented with both real and imaginary parts given by RJint and IJint respectively as 

shown in (2.15). It should be noted that both RJint and IJint are functions of Jint, A, δ and ϕ. 
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                         (2.14) 

   
int int intint int, , , , , ,J J JX R J A jI J A                                  (2.15) 

 

 

Figure 2.5: Error in estimating δ versus actual value of δ using equation (2.11). 

 
Similarly, XJint+1 and XJint-1 need to be modified from (2.8-2.9) to include the 

neglected term in (2.5). It can be seen that two equations are obtained by taking the real 

part and imaginary part of (2.15) separately. Doing the same for XJint+1 and XJint-1, a total 

of six equations are obtained. Let the six equations be given as f1,..,f6. (2.16-2.21). 
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     
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     
int int3 int 1 int 1, , , , , ,J Jf J A R J A real X                               (2.18) 

     
int int4 int 1 int 1, , , , , ,J Jf J A I J A imag X                               (2.19) 

     
int int5 int 1 int 1, , , , , ,J Jf J A R J A real X                                (2.20) 

     
int int6 int 1 int 1, , , , , ,J Jf J A I J A real X                                (2.21) 

From above six non-linear equations, the three parameters are accurately 

estimated by Newton method and least squares. Using Newton method, the value of y in 

(k+1)
th

 iteration, yk+1, is given by equation (2.22). 

yk+1 = yk – Bk\Fk,                                                        (2.22) 

where “\” operator is the least squares operator, yk is the vector containing the 3 

estimated parameters in k
th

 iteration, Fk is the vector of f1..f6 evaluated using estimated 

values in yk and Bk is the Jacobean matrix evaluated using values in yk as shown below. 
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      
 
   

                           (2.23) 

It can be mentioned that this method always converges to a global minima as 

the initial points to start the iterations are very close to the actual values.  Also, it can be 



www.manaraa.com

32 

 

 

noticed that the number of operations in each iteration is no longer dependent on the 

length of the data record. Each iteration involves 6 equations and 3 unknowns, thus 

making the method more computationally efficient compared to other sine fitting 

methods [9-12] that use total data record for each iteration. Using rigorous simulation 

study, it is seen that a maximum of 5 iterations would always result in delivering precise 

values of the 3 parameters, thus, accurately estimating the fundamental. This accuracy in 

estimating the three parameters is limited by the noise power per bin (Fig. 2.7). The error 

in estimating the same 1000 values of δ’s (as in Fig. 2.5) using this 2-step method is 

shown in Fig. 2.6. It can be seen that, the estimation error using the 2-step method is 

decreased by three orders (from 10
-4

 to 10
-7

) compared to that using equation (2.11). 

Also the error obtained using this method is only limited by the noise power per bin as 

shown in Fig. 2.7. A total of 50 randomly selected values of δ for each value of SNR are 

considered and the error in estimating δ is noted down. The data record length (M) for all 

runs is 4096. With constant data record length (M) and signal power, as the value of 

SNR increases, the noise power per bin decreases. It can be seen from Fig. 2.7 that, as 

the noise power per bin decreases (i.e., as SNR increases), the estimation error also 

decreases and more accurate values of δ can be obtained. Hence, the proposed 2-step 

fundamental identification method accurately estimates the fundamental component and 

the accuracy is only limited by the noise power per bin. Let the final estimates of δ, A 

and ϕ be given as  ̂  ̂ and  ̂ respectively. 



www.manaraa.com

33 

 

 

 

Figure 2.6: Error in estimating δ versus actual value of δ using 2-step method 

 

 

Figure 2.7: Error in estimating δ using 2-step method for different SNR values. With 

fixed signal power, as SNR increases, estimation error decreases 

 

B) Estimate the non-coherent fundamental 

Using  ̂,   ̂ and  ̂,  the non-coherent fundamental component in x[n] can be 

estimated as x_nc[n] and is given as 

 
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                                   (2.24) 
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C) Construct a coherent fundamental 

The fundamental component that is coherent (signal corresponding to Jint cycles) 

can be constructed using   ̂ and  ̂,  and is given as x_c[n] as shown in (2.25). 

  int2
_ cos

J
x c n A n

M




 
  

 
                                       (2.25) 

D) Fundamental Replacement 

Using equations (2.24) and (2.25), the non-coherent fundamental can be removed 

from the output of ADC and replaced by a coherent fundamental. This replaced output is 

given as xnew[n] in equation (2.26). 

       _ _newx n x n x nc n x c n                                     (2.26) 

Since the non-coherent fundamental component in x[n] is replaced with a 

coherent fundamental in xnew[n], taking FFT of xnew[n] gives accurate spectral results 

(SNR, SFDR, THD). Thus, the method can be used to perform full spectrum test without 

using windows and without large increase in area and test time (as shown in Simulation 

results). 

The flow chart in Fig. 2.8 summarizes the steps to be performed for spectral test 

using FIRE Method. 
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Figure 2.8: Flow Chart to perform spectral testing using proposed FIRE method 

 

IV. SIMULATION RESULS 

In this section, simulation results to verify the functionality and robustness of the 

proposed FIRE method are presented. The computation time of the proposed method is 

also compared along with other methods used for non-coherent sampling. In Section IV 

and Section V, one data stream was used to estimate the spectral characteristics. The 

data record length was selected to accommodate the effect of noise. 
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A) Functionality 

An 18-bit ADC was generated using MATLAB with an INL of 1.2 LSB. The 

true THD, SFDR and SNR values of the ADC are obtained by sending a pure sine wave 

that is coherently sampled. Later, a non-coherently sampled pure sine wave with same 

amplitude is sent to the same ADC and the proposed method is used to obtain spectral 

characteristics. 

Fig. 2.9 shows three spectrums of the same ADC obtained using the following 

cases. The Blue spectrum is obtained when the ADC is coherently sampled with M = 

16384 and J = 593.00. The spectrum is clean without any leakage. The other two 

spectrums are obtained using non-coherently sampled data with J = 593.1237. The 

Green spectrum is obtained when DFT is directly performed on the non-coherently 

sampled data. As expected, there is severe leakage in the spectrum due to non-coherency 

(δ = 0.1237). However, using proposed FIRE method on the same non-coherently 

sampled data, the leakage is completely eliminated as shown in the Red spectrum. It can 

also be seen that the red spectrum exactly matches with the Blue spectrum.  Table 2.1 

lists the spectral results estimated using the proposed method on non-coherently sampled 

data and the coherently sampled method. It can be seen that the results obtained from 

non-coherently sampled data using FIRE method are very close to those obtained using 

coherent sampling method. This shows that the proposed method accurately estimates 

the spectral characteristics even when an input signal is not coherently sampled. 
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Figure 2.9: Plot showing the spectrum of an ADC for three cases. Blue spectrum is 

obtained using Coherent sampling (Jint = 593), Red spectrum is obtained using the 

proposed FIRE method on non-coherently sampled data (J = 593.1237) and Green 

spectrum is obtained after performing DFT on the same non-coherently sampled data.  

 

TABLE 2.1: Spectral Results of 18-bit ADC corresponding to Fig. 2.9 

Method 
THD 

(dB) 

SFDR 

(dB) 

SNR 

(dB) 

Coherent + DFT 

(Ideal) -110 113.7 108.5 

Non-coherent + 

FIRE -109.7 113.6 108.6 

 

B) Robustness 

The robustness of the method with signal frequency and non-coherency is also 

presented. An 18-bit ADC with INL of 2.4 LSB was simulated. 1000 values of δ and Jint 

corresponding to input signal are randomly generated. The values of δ and Jint range 

from -0.5 to 0.5 (the whole range of δ) and from 0 to M/2 (whole Nyquist range) 
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respectively. The THD, SFDR and SNR of the ADC obtained by coherent sampling are -

104.2dB, 107.5dB and 108dB respectively. The errors obtained in estimating the THD, 

SFDR and SNR values of the ADC with respect to signal frequency (given as a fraction 

of sampling frequency) are shown in Fig. 2.10. It can be seen that the values are very 

accurately estimated and the method is robust for input signal frequency in the whole 

Nyquist range. Fig. 2.11 shows the errors in THD, SFDR and SNR with respect to non-

coherency, δ. The errors are attributed due to several factors such as noise, the accuracy 

with which the parameters are estimated and also the change in spectral parameters due 

to slight change in frequency (as changing δ changes the input frequency). It can also be 

seen that the method is robust over the whole range of δ, from -0.5 to 0.5. Hence, the 

method is robust for input signal frequencies in the whole Nyquist range and for any 

non-coherency. 

 

Figure 2.10: Error in estimating THD, SFDR and SNR over the whole range of input 

signal frequency (From DC to Nyquist range) 
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Figure 2.11: Error in estimating THD, SFDR and SNR over the whole range of non-

coherency in the fundamental, δ (From -0.5 to 0.5) 

 

C) Computation Time 

The calculation time complexity of the proposed method is of the order of 

M*log2M, since, performing FFT is the only major time consuming block. The time 

taken by the proposed FIRE method is compared with different windows, the best data 

record length method [23] and a Four parameter sine fitting method [8] in Table 2.2 

(using MATLAB on a 64-bit, Intel Core i5 CPU with 4GB memory). It can be seen that 

of all the methods listed, the proposed method provides accurate test results with least 
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is not necessarily a power of 2. This results in larger computation time for the FFT 

algorithm in [23]. It can also be seen from the table that only one window can accurately 

test an 18-bit ADC while the other three windows cannot be used to test. This shows the 

dependency of results on the type of window used. As a result, prior knowledge about 

the resolution of ADC is required to perform spectral test using windows. The 

computation time using a Four-parameter sine-wave fitting method using time domain 

data and nonlinear least squares method is shown. Though the method provides accurate 

estimates of fundamental, it can be seen that using all time-domain data consumes large 

computation time. As a result, the proposed FIRE method can be readily used to test any 

resolution ADC to obtain fast and accurate spectral results. 

 

TABLE 2.2: Comparison of Calculation Time (J=519.379, M = 8192, 18-bit ADC, INL 

= 1.4LSB) 

Method Time Functionality 

Proposed Method 1.7 ms Accurate 

Best Data Record Method [23] 27.8 ms Accurate 

Window 2 in [29] 2.9 ms Accurate 

Blackman Harris (4-term) 0.7 ms Inaccurate 

Hanning 0.5 ms Inaccurate 

Hamming 0.9 ms Inaccurate 

* Four Parameter Sine Fit 
>25.2  ms 

Occasional 

Inaccurate SFDR (Nonlinear Least Squares) 

 

*: Time taken to only estimate the fundamental accurately. Later, 3-parameter fit 

is required to estimate each harmonic using the total 8192 points which results in more 

computation time (Clause 8.8.1.3 of [8]). 
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V. MEASUREMENT RESULTS 

In this section, measurement data is used to validate the effectiveness of the 

proposed FIRE method. Two commercially available ADCs are tested for spectral 

characteristics with non-coherent sampling using the FIRE method. The first ADC is 

ADS1282 which is a very high resolution delta-sigma ADC with an SNR of 120dB. This 

ADC is used to verify the functionality of FIRE method for very high resolution ADCs. 

The second ADC is ADS8318 which is a 16-bit, 500 kSPS Successive Approximation 

Register (SAR) ADC. This ADC is used to verify the robustness of proposed FIRE 

method with respect to whole range of non-coherency, δ, using measurement data. 

A) ADS1282 Test (Functionality) 

Fig.2.12 shows the test setup used to test ADS1282. DAC1282 is used to provide 

the pure input signal to test ADC. Both the DAC and ADC are controlled by the same 

master clock. The ADC sampling clock frequency is 1 kHz and the input signal 

frequency for coherent sampling is 31.25 Hz. A total of 4096 points were sampled (M). 

The value of J obtained is 128 for coherent sampling. With this setup, a clean spectrum 

is obtained and is given by the blue plot in Fig. 2.13. Later, the same ADC is non-

coherently sampled with signal frequency given by 30.952 Hz, which results in J equal 

to 126.781. This corresponds to non-coherent sampling with δ=-0.219. The spectrum of 

the output of ADC when FFT is applied on this data is given by the green plot in Fig. 

2.13. As expected there is severe spectral leakage. However, using the proposed FIRE 

method on this non-coherently sampled data resulted in a clean and accurate spectrum as 

shown by the Red plot in Fig. 2.13. It can be seen that the Red spectrum (FIRE) matches 
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with the Blue spectrum (Coherent) and provides accurate spectral results for a very high 

resolution ADC. To show the effect of windows on spectral testing, the spectrum 

obtained when a 4-term Blackman Harris window is used on the same non-coherently 

sampled data is shown by the purple plot in Fig. 2.13. Blackman Harris window is used 

here as it is one of the most widely used windows for testing. Table 2.3 compares the 

values of THD, SFDR and SNR of the ADC using the FIRE method and windows 

method with the values obtained using Coherent sampling method. It can be seen that the 

FIRE method accurately estimates the parameters. From the purple plot in Fig. 2.13 and 

from Table 2.3, it can be said that 4-term Blackman Harris window cannot be used for 

testing this high resolution ADC. Hence, as mentioned earlier, the choice of window 

used is dependent on the resolution of ADC. 

 

Figure 2.12: Test setup for ADS1282 (fSamp = 1 kHz, M = 4096, Jcoherent = 128, Jnoncoherent 

= 126.781) 

 

TABLE 2.3: SPECTRAL CHARACTERISTICS OF ADS1282 MEASURED USING COHERENT 

AND NON-COHERENT SAMPLING (IN dB) 

METHOD THD SFDR SNR 

Coherent -130.9 133.4 120.3 

Non-coherent + FIRE -129.6 132.3 120.1 

Non-coherent + 4-term B-H Window -126.5 130.8 90.5 
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Figure 2.13: Plot showing Spectrum of ADS1282 for 4 different cases. The Blue 

spectrum is obtained with coherent sampling (J = 128). The Red spectrum is obtained 

when FIRE method is used on non-coherently sampled data (J = 126.781). The Green 

spectrum is obtained when DFT is performed on non-coherently sampled data. The 

purple spectrum is obtained when a 4-term Blackman-Harris (B-H) window is used on 

the non-coherently sampled data. 

 

B) ADS8318 Test (Functionality and Robustness) 

The second ADC that is tested is ADS8318. The test setup is as shown in Fig. 

2.14. A signal generator is followed by two band pass filters with center frequency at 10 

kHz. The output of the filter is fed to the input of ADC. The ADC is clocked at 500 

kSPS and a total of 2048 samples were collected. The input signal frequency to achieve 

coherent sampling is given by 10.009765625 kHz which gives a value of J equal to 41. 

Fig. 2.15 shows the values of THD, SFDR and SNR along with the spectrum of 

ADS8318 with coherent sampling. For a value of δ = 0.46, Fig. 2.16 shows the spectrum 

of the same ADC using FIRE method. It can again be seen that there is no leakage in the 
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spectrum in spite of non-coherent sampling and the spectral parameters are very 

accurately estimated. 

 

 

Figure 2.14: Test Setup for ADS8318 

 

 

Figure 2.15: Spectrum of ADS8318 using Coherent Sampling 
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Figure 2.16: Spectrum of ADS8318 using Non-coherent sampling and Proposed FIRE 

method 

 

Later, to test for robustness of the FIRE method for any value of non-coherency 

(δ) using measurement data, the frequency of input signal is changed from 9.887 kHz to 

10.132 kHz so that the value of J varies from 40.5 to 41.5. This covers the whole range 

of δ from -0.5 to 0.5. The values of THD, SFDR and SNR are evaluated for each case 

and plotted in Fig. 2.17, Fig. 2.18 and Fig. 2.19 respectively. The variation of THD, 

SFDR and SNR for different values of δ is expected as only 2048 points are sampled to 

test a 16 bit ADC. It can be seen that the values of THD, SFDR and SNR are very 

accurately estimated using the proposed FIRE method for any value of non-coherency, δ. 

Hence, the functionality and robustness of the proposed FIRE method with non-

coherent sampling is successfully validated using measurement data from two high 

resolution ADCs. 
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Figure 2.17: Measured THD values over whole range of δ for ADS8318 

 

 

Figure 2.18: Measured SFDR values over whole range of δ for ADS8318 

 

 

Figure 2.19: Measured SNR values over whole range of δ for ADS8318 
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VI. CONCLUSION 

A new Fundamental Identification and Replacement (FIRE) test method was 

proposed that completely eliminates the requirement of coherent sampling for full 

spectrum test. A two-step method using DFT and Newton method was described to 

accurately identify the non-coherent fundamental. It was shown that the accuracy with 

which the fundamental was identified is only limited by the noise power per bin 

(Pnoise/M). As a result, the method can be readily used to test any ADC output without 

prior knowledge about the resolution of ADC, unlike windowing method. Simulation 

results were presented to show the functionality and robustness of the proposed FIRE 

method with respect to any non-coherency (δ) and to any input signal frequency in the 

whole Nyquist range. The time complexity of the method is of the order of M*log2(M). 

Thus, all the issues related to previous state of-the art techniques such as, large 

computation time, large area, lack of robustness of the method over the whole Nyquist 

range, dependency of the results on the window chosen and inability to perform full 

spectrum test, have been addressed in the proposed FIRE method. Furthermore, 

measurement results using two commercially available high resolution ADCs were 

presented that validated the accurate functionality and robustness of the FIRE method. 

Finally, it can be said that the FIRE method can be used in all forms of test such as 

Bench characterization, Final test and BIST, to save the cost and effort associated with 

achieving coherent sampling. 
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CHAPTER 3 

FERARI: AN ACCURATE FULL SPECTRUM TEST 

METHOD ROBUST TO SIMULTANEOUS NON-

COHERENT SAMPLING AND AMPLITUDE CLIPPING  
 

For spectral testing of Built-in Self-Test Analog to Digital Converters, it is a very 

challenging task to precisely control the amplitude and frequency of input sinusoid 

signal. Amplitude over-range results in clipping ADC output and non-coherent sampling 

results in spectral leakage. In this chapter, a new method is proposed that provides 

accurate spectral results even when the input to ADC is both over-ranged and non-

coherently sampled. This relaxes the condition to have precise control over the input 

signal and thus decreases the test cost. The method includes Fundamental Estimation, 

Removal And Residue Interpolation (FERARI) to obtain accurate spectral results. 

Simulations show the functionality and robustness of proposed method with both non-

coherency and amplitude over-range. Measurement results of a commercially available 

16-bit SAR ADC are used to verify the method for both functionality and robustness. 

 

I. INTRODUCTION 

In BIST ADCs, since both the testing circuitry and the ADC are present on the 

same chip, it would be challenging to achieve precise control over frequency and 

amplitude of the test input sinusoid signal. Due to imprecise frequency control, coherent 

sampling cannot be achieved unless a master clock is used. However, using master clock 

on-chip is not an attractive solution as it increases the silicon area. On the other hand, 
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due to imprecise amplitude control, there could be cases when the input signal to ADC 

exceeds the input range of ADC. Such cases result in clipped ADC output. Both these 

situations could occur in BIST ADCs and can result in grossly wrong spectral results if 

Discrete Fourier Transform (DFT) is performed on such data. As a result, it is important 

to design a robust method that can accurately test the dynamic characteristics of an ADC 

even when the input signal is slightly over-ranged and is non-coherently sampled. 

In the literature, several methods have been proposed to obtain accurate spectral 

results when the input is non-coherently sampled. Such methods include windowing 

method [1-5], interpolating DFT method [6], singular value decomposition method [7], 

four parameter sine fitting method [8] and fundamental identification and replacement 

methods [9-11]. However, in the presence of clipped ADC output, none of the above 

methods provide accurate spectral results. 

The issue of over-ranged input was discussed in the recent past. In [12], a method 

to identify the fundamental and estimate ENOB when the input is over-ranged was 

proposed. However, the method cannot be used for high resolution ADCs and also 

cannot estimate all spectral parameters accurately. In [13], a technique to suppress the 

spurious noises generated by ADC clipping using interpolation of clipped samples was 

proposed. The method involves oversampling, polynomial spline interpolation and sinc 

function interpolation which is complex. In [14], oversampling ADC output was used 

followed by polyphase decomposition to compensate for clipping.  

It can be said that none of the methods mentioned above can accurately test 

spectral characteristics of high resolution ADCs when the input is simultaneously over-
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ranged and non-coherently sampled. For BIST ADCs to be practical, it is important to 

develop such a method. There are two added advantages by developing such a method. 

The first one is the ability to test the whole input range of ADC and the second one is the 

ability to use a single method to test both the static and dynamic specifications of an 

ADC at a given frequency (since static testing usually involves clipping). 

In this chapter, such a method that can accurately test the spectral characteristics 

of ADC when the input signal is slightly over-ranged and is not coherently sampled is 

proposed. The input over-range is limited to 2% of the input range of ADC. This is a 

valid and practical limit for BIST ADCs as amplitude of the on-chip input signal to ADC 

can be controlled up to 2% without any challenges. The proposed method involves 

accurate estimation of the fundamental component and later subtracts the estimated 

fundamental from the output of ADC to obtain the residue. The residue is then 

interpolated to obtain accurate information of ADC’s harmonics. The method is called 

FERARI (Fundamental Estimation, Removal And Residue Interpolation). 

The remainder of the chapter is presented as follows. In section II, a brief 

overview of non-coherent sampling and ADC output clipping is presented. In Section 

III, a new method (FERARI) is proposed that can accurately estimate spectral 

characteristics when the ADC output is both clipped and non-coherently sampled. In 

Section IV, simulations are presented that show the accuracy and robustness of the 

proposed method. In Section V, measurement results are shown to validate the 

functionality and robustness of proposed method and Section VI concludes the chapter. 
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II. EFFECT OF NON-COHERENT SAMPLING AND ADC CLIPPING 

Before discussing about the effects of non-coherent sampling and ADC clipping, 

a brief overview about the ADC input range is presented. For a given N-bit ADC with a 

gain of 1 and no offset, let T (0 to VADC) be the total input range of the ADC that covers 

all the codes from 0 (000...0) to 2
N
-1 (111...1) as shown in Fig. 3.1. For any input below 

0, the output is clipped at 0(000...0) and for any input above VADC, the output is clipped 

at 2
N
-1 (111...1). The linear range of the ADC is the range in which the ADC is tested 

and is recommended to be operated. In major applications, the total range of ADC is 

tested. In such cases, T would be the linear range. However, in some applications, ADCs 

are tested only for a partial range in which they are intended to be applied. As shown in 

Fig. 3.1, the linear range of the ADC that needs to be tested is given by TL (= Ft – Fb), 

where Ft and Fb are the top and bottom values of range TL respectively. In such cases, if 

the input is below Fb (above 0) or above Ft (below VADC), the ADC provides a valid code 

and does not clip. Taking spectrum of such output would result in pessimistic results as 

the tested results do not correspond to the actual linear input range. From this point, in 

this chapter, the term “input range of ADC” corresponds to the linear input range of the 

ADC that is tested. If T is the input range of ADC that is to be tested, then, Ft =2
N
-1 and 

Fb=0.  

(000..0) (111..1)

VADC0

Fb Ft

T

TL  

Figure 3.1: Figure showing the total range, T (Codes 000…0 to 111..1) and the linear 

input range, TL (Ft to Fb) of ADC. T = TL if, Ft = 111..1 and Fb = 000..0. 
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Let fSig be the frequency of input signal to ADC, fSamp be the clock frequency, M 

be the total number of data points recorded to measure the spectral characteristics and J 

be the total number of periods of the input signal sampled in M points. The four 

parameters are related by equation (3.1).  

Sig

Samp

f
J M

f
                                                        (3.1) 

The M point data record is said to be coherently sampled if J in (3.1) is an integer 

and, non-coherently sampled if J is not an integer. 

Let the input range of ADC under test be [Fb Ft] as shown in Fig. 3.1. Let X(t) be 

the time domain representation of analog input to ADC at time t. X is ideally a pure sine 

wave without any harmonics and is given by (3.2). 

     cos 2OS SigX t V A f t w t                                       (3.2) 

where, A is the amplitude of fundamental, Vos is the DC level and w(t) is the noise at 

time t. The conditions to obtain in-range and over-range input signals are given by 

equations (3.3) and (3.4) respectively.  

(VOS + A <= Ft) AND (VOS – A >= Fb)                         (3.3) 

(VOS + A > Ft)   OR   (VOS – A < Fb)                          (3.4) 

It can be mentioned that for standard ADC spectral test, equation (3.3) is satisfied 

and J in (3.1) is an integer. The procedure to perform standard spectral test was 

described in chapter 1. 
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In this section, the issues with simultaneous non-coherent sampling and clipped 

ADC output are described. 

A) Non-coherent Sampling 

If the input signal is within the input range of ADC and is not coherently 

sampled, J in (3.1) is not an integer and equation (3.3) is true. The effects of non-

coherent sampling alone were discussed in chapter 2. For convenience, the spectrum of a 

non-coherently sampled, unclipped ADC output data is shown in Fig. 3.2. Severe 

leakage in the spectrum is observed due to non-coherent sampling. 

B) ADC Clipping 

If the input signal is coherently sampled and is over-ranged (J in (3.1) is an 

integer and equation (3.4) is true), the output of ADC is clipped. The spectrum of such 

clipped data is shown in Fig. 3.3. It can be seen that severe distortion is introduced due 

to clipping which provides inaccurate spectral results. 

 

Figure 3.2: Spectrum of a non-coherently sampled, unclipped ADC output data 
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Figure 3.3: Spectrum of a coherently sampled, clipped ADC output data 

 

C) Non-coherent sampling and ADC Clipping 

If the input signal to ADC is simultaneously over-ranged and non-coherently 

sampled, the DFT of the output of such data would result in a spectrum as shown in Fig. 

3.4. The spectrum not only has leakage due to non-coherent sampling but also has higher 

distortions due to clipped ADC output. The spectrum cannot provide accurate spectral 

results. As mentioned earlier, such cases could arise in BIST ADCs due to lack of 

precise control over amplitude and frequency of input. A test method that can accurately 

estimate all the spectral characteristics of ADC when the input is both over-ranged and 

non-coherently sampled is required. 

From Fig. 3.4, it can be stated that, when DFT is performed on a non-coherently 

sampled, slightly clipped ADC output, the leakage and distortion in the spectrum is 

mainly due to the fundamental component in ADC output. The effect of non-coherent 

sampling can be eliminated by first accurately estimating the non-coherently sampled, 
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clipped and subtracted from the ADC output to obtain the residue. This residue contains 

the information of harmonics and noise of ADC (at points when the ADC output is not 

clipped). Fig. 3.5 shows the spectrum of residue and it can be seen that leakage is 

eliminated. 

 

Figure 3.4: Spectrum of a non-coherently sampled and clipped ADC output. 

 

 

 

Figure 3.5: Spectrum of the residue obtained after subtracting the non-coherently 

sampled, over-ranged fundamental from ADC output in Fig. 3.4. Leakage due to non-

coherent sampling is eliminated. 
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The effect of clipping can be removed by constructing a coherently sampled, 

unclipped fundamental signal and adding the information of harmonics and noise at each 

code hit by the newly constructed fundamental. This information of harmonics and noise 

can be obtained by interpolating the residue from ADC output codes that are not clipped.  

To identify the fundamental in clipped ADC output data, methods described in 

[10-11] or in chapter 2 cannot be used as they do not consider the effect of clipping. The 

methods were used for high resolution spectral testing where the distortion power is 

negligible compared to that of the fundamental power. However, in presence of clipping, 

the distortion power is no longer negligible compared to that of the fundamental. So, a 

new fundamental identification method is required that is valid for clipped data. In the 

following section, a method to accurately estimate the spectral characteristics of an ADC 

when an input is non-coherently sampled and is over-ranged is proposed. A new method 

to identify the fundamental component in a non-coherently sampled, clipped ADC 

output data is described. The process of interpolating the residue is explained in detail. 

 

III. FUNDAMENTAL ESTIMATION, REMOVAL AND RESIDUE 

INTERPOLATION (FERARI) METHOD 

 

Let x[n] be the n
th

 sampled point of X(t). Let yA[n] be the analog interpretation of 

n
th

 sampled digital output of ADC whose gain and offset are corrected. From (3.1), (3.2), 

(3.3), (3.4) and noting that the over-range up to 2% is considered, x[n] and yA[n] can be 

represented by equations (3.5-3.6) respectively. yA[n] is obtained after considering only 

first H harmonics and neglecting the higher order harmonics as their power is negligible. 
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

                                if ADCx n V

                 (3.6) 

for n = 0,1,2,….,M-1, w[n] is the noise in n
th

 sample, ϕ is the initial phase at which the 

signals x and yA are sampled. Ah and ϕh respectively contain the information of 

amplitude and phase of h
th

 harmonic of ADC such that Ah<<A and ϕhϵ(0 2π]. M is 

selected to be a power of 2 for faster processing of Fast Fourier Transform (FFT). 

Before the fundamental is identified, in order to test ADC within the input range 

given by [Fb Ft], equation (3.6) can be changed to (3.7). This includes clipping the values 

of yA that are not in the ADC input range. It should be noted that if Ft = VADC and Fb = 0, 

equation (3.6) is equal to equation (3.7). 

     

 

 

       if  

                    if  

        =              if  

A b A t

b A b

t A t

y n y n F y n F

F y n F

F y n F

  

 



                                           (3.7) 

The sample waveforms of x and y are shown in Fig. 3.6. As input x, exceeds the 

input range of ADC, y is clipped. With this clipped data, the fundamental component is 

estimated as described in the following section. 
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Figure 3.6: Plot showing a sample waveform of input to ADC, x (Eq. 3.5) and modified 

output of ADC, y (Eq. 3.7). 

 

A) Fundamental Identification 

From (3.6-3.7), in order to identify the fundamental, it is required to estimate 

VOS, A, Jint, δ and ϕ. All the five parameters can be estimated using both time domain and 

frequency domain data. It should be noted that there is no information of fundamental or 

harmonics in the points that are clipped. 

1. Estimate A and VOS 

From equations (3.6-3.7), it can be seen that y contains J cycles of the input 

signal. All the points in y and x are folded in to a single cycle as shown in Fig. 3.7 to 

obtain y1 and x1 as given by (3.8-3.9) respectively. The effect of harmonics is neglected 

since Ah<<A. ϕ is the initial phase of fundamental that is sampled in x1. 
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Figure 3.7: Plot showing signals x1 and y1 after folding x and y in to one cycle. Kt and Kb 

are total number of points in y1 (or y) equal to Ft and Fb respectively. 

 

Let Kt and Kb be the total number of points in y1 that are equal to Ft and Fb 

respectively. Let φ and ψ be the phases in y1 when the clipping stops at Ft and clipping 

starts at Fb respectively as shown in Fig. 3.7. Using Kt and Kb, the values of φ and ψ are 

obtained from equation (3.10). 

1 1
;         ;t bK K

M M
   

 
                                       (3.10) 

Substituting Ft and Fb for y1 in (3.9) at phases φ and ψ respectively, the values 

of A and Vos can be estimated (3.11-3.12). 
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      
                              (3.12) 

It should be noted that it is not required to perform this folding operation in 

the algorithm. It was used only to elucidate the procedure to estimate A and VOS. From 

(3.11-3.12), to estimate A and VOS, the values of Ft, Fb, Kt and Kb are required. Ft and Fb 

are known from the input range of ADC while Kt and Kb can be obtained by processing 

y directly. 

2. Estimate Jint, δ and ϕ 

The remaining three parameters are estimated using both time and frequency 

domain data of y. DFT is applied on y to obtain Yk {k
th

 DFT coefficient} given by (3.13). 

 
21

0

,     0,1,2,..., 1
kM j n

M
k

n

Y y n e for k M
 



                                    (3.13) 

Jint is estimated as the bin index that has the maximum power in half 

spectrum excluding DC component and is given by equation (3.14). 

int

1 ( /2)

arg max k
k M

J Y
 

                                                  (3.14) 

From [15], to obtain the initial estimates of δ and ϕ, for M>1024, Yk is given 

as (3.15) (similar to the procedure performed in chapter 2). 
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                                              (3.15) 

Using YJint, YJint+1 and YJint-1, from (3.15), the initial values of δ and ϕ can be 

obtained using (3.16-3.17) respectively. 

int int

int int

int int

int int

1 1

0 2 2

1 1
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2

J J

J J

j jJ J M M

J J

Y Y

Y YM
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e e

Y Y

 
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
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

 

  
  

  
  

    
  
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                               (3.16) 
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                                          (3.17)  

Since, Yk corresponds to a non-coherently sampled data, the values of δ and ϕ 

obtained are not accurate. Let Δδ (=δ-δ0) and Δϕ (=ϕ-ϕ0) correspond to errors in 

estimating δ and ϕ using (3.16-3.17) respectively. It is required to estimate these errors 

in order to improve the accuracy of estimated δ and ϕ.  

Substituting the estimated values in y (eq. 3.7) gives equation (3.18) and 

rearranging the terms, we get (3.19). The effect of harmonics is neglected and “n” in 

(3.18-3.19) correspond to the samples that are not clipped. The points in y that are close 

to Vos (mid-range codes) are considered in (3.19) as shown in Fig. 3.8. These points are 

considered because, they are linear in the range and give good estimates of Δδ and Δϕ 

when Least squares is applied on (3.19). After estimating Δδ and Δϕ, using (3.11-3.12), 

(3.14), (3.16-3.17) the initial estimated fundamental, zi, is given by (3.20). 
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   int 01

0

22
cos

OSy n V J nn

M MA

 
  

  
     

 
 

                    (3.19) 

 
 

 int 0

0

2
cosOSi

J
z n V A n

M

  
 

  
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Ft

Fb

Points considered for 

Least Squares using (19)

 

Figure 3.8: Plot showing signal y and the points considered for Least squares using 

equation (3.19). Only output codes around mid-range are considered. 

 

To further improve the accuracy in estimating A, let ΔA be the error in 

estimating A (eq. 3.11). ΔA can be estimated by first clipping zi to obtain zic and 

subtracting zic from ADC output, y, to obtain the error signal, ez as shown in (3.21-3.22). 

Later, DFT is applied on ez and the fundamental amplitude in ez, ΔA, is estimated using 

(3.23).  ̃k in (3.23) is the k
th

 DFT coefficient of ez. Now the actual fundamental 

component in y can be estimated as z using (3.24) and is shown in Fig. 3.9a (green 

dotted plot). 
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     icez n y n z n                                                     (3.22) 
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                      (3.24) 

Since, non-coherently sampled fundamental is the major source of error, 

subtracting the estimated fundamental, z, from ADC output, y, eliminates the effect of 

non-coherent sampling. 

B) Obtain Error (Harmonics + Noise of ADC) Information 

The residue, e, obtained after subtracting the estimated fundamental, z, from 

modified ADC output, y, is shown in Fig. 3.9b. It can be seen that the blocked regions 

contain no information about the ADC non-linearity as the input signal is not in the ADC 

input range. So, the information of harmonics and noise of ADC is present only in the 

points that are not clipped in y. In order to include the dynamic effects of ADC, the error 

voltage, e in Fig. 3.9b, is separated into two categories, FP and RP which correspond to 

the error voltage when the input signal is falling and rising respectively as shown in Fig. 

3.9b. The error voltage in FP and RP categories is separated to be ef and er respectively. 

From Fig. 3.9a and 3.9b, for each sample in RP, the value of er[n] is plotted with respect 
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to corresponding y[n] as shown in Fig. 3.10b. Similarly, ef[n] is plotted with respect to 

y[n] as shown in Fig. 3.10a. With this, error in both phases (Rising and Falling) with 

respect to the code hit by ADC is obtained. This error contains the information of 

harmonics and noise of ADC. 
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 Figure 3.9: a): TOP :- Figure showing ADC output, y and estimated fundamental, z.         

b) BOTTOM :- Figure showing the error (Harmonics + Noise) information, e, of ADC. 

(RP: Rising Phase, FP: Falling Phase, Blocked: Neglect). 
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Figure 3.10: a) LEFT:- Plot of error in FP, ef versus ADC output code, y. b) RIGHT:- 

Plot of error in RP, er versus ADC output code, y. 

 

C) Coherent Time Domain data Reconstruction 

With the information of Jint, ϕ and ADC range (Ft and Fb), the input signal that is 

coherently sampled and covers the input range of ADC (without clipping) is obtained 

and is given by v in (3.25). It is required to add the information of harmonics of ADC on 

to each sample of the coherent fundamental v to accurately estimate the spectral 

characteristics of ADC. 

It should be noted that the codes hit in ADC output, y, are not the same codes that 

are hit using v (Coherent, unclipped). To obtain the errors corresponding to each code in 

v, first, all points in v are folded into one cycle to get v1 given by (3.26) as shown in Fig. 

3.11 (blue). Also, shown in Fig. 3.11 is the folded ADC output y1 (red). The information 

of error for each sampled point in the falling phase of v1 is obtained by using ef as shown 

in Fig. 3.12 (blue straight lines). For each sampled point in falling phase of v1 (v1[c]), 

two codes in y1 (y1[a] and y1[b]) that are in the falling phase and close to v1[c] are used 
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and interpolation of the two errors at those codes (ef[a] and ef[b]) is performed to 

estimate the error at code v1[c] (given as ev[c]). The interpolation equation is as shown 

in equation (3.27). Similarly, the error information for the rising phase of v1 can be 

obtained by interpolating er (Red straight lines in Fig. 3.12). 

  int2
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2 2

t b t bF F F F J
v n n

M




   
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 
                             (3.25) 
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Figure 3.11: Figure showing folded ADC output, y1 and folded coherent signal, v1. 
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The information of error obtained for each code hit by v1 (in both rise and fall 

phases) is then added to v1 to get f1. f1 is then unfolded into Jint cycles to obtain f. It 

should be noted that f contains not only the information of coherent fundamental but also 

the accurate information of harmonics and noise of ADC. Taking FFT of f would result 

in a spectrum that looks identical to the spectrum obtained using ideal test setup. Hence, 

accurate spectral characteristics of ADC can be obtained even with non-coherently 

sampled and clipped data using proposed method.  
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Figure 3.12: Figure illustrating the interpolation of error onto v1. Error in ef is 

interpolated onto points in v1 in falling phase (Here left half of v1) while error in er is 

interpolated onto points in v1 in rising phase (Here right half of v1) 

 

It can be argued that the dV/dt effects are not the same for both the signals y and 

v (from Fig. 3.11). However, since in this chapter, only 2% over-range is considered, it 

can be mentioned that the dV/dt effect on harmonics’ estimation is negligible. 
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D) Need for Interpolation 

It should be noted that the step to perform interpolation for each point on the 

coherently sampled data (v) is important to test high resolution ADCs. If interpolation is 

not performed, the residue obtained (after clipping and subtracting the estimated 

fundamental from the clipped ADC output) is directly added to the coherently sampled 

fundamental, v, to obtain final data. DFT is performed on this data to perform spectral 

test.  Let this process be called “Method B”. Method B can be used only when the power 

associated with the clipped points is less than the noise power of the ADC. Hence 

Method B can be used to test only low resolution ADCs. However, as the resolution of 

ADC increases, the noise power of ADC decreases and Method B cannot be used. For 

instance, consider testing a 12-bit ADC and 16-bit ADC with non-coherently sampled, 

1.7% over-ranged input signal. The spectral results obtained using three methods are 

given in Table 3.1 and Table 3.2. The first method is the standard method with unclipped 

and coherently sampled ADC output. The second method is using Method B and the 

third method is using the proposed method on the same ADC with non-coherently 

sampled, over-ranged input. From Tables 3.1 and 3.2, it can be seen that Method B 

provides accurate results only for the 12-bit ADC. However, the proposed method can be 

used to test both low and high resolution ADCs accurately. Hence, it is important to 

perform residue interpolation to obtain accurate spectral results when an input to ADC is 

over-ranged and is non-coherently sampled. 
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TABLE 3.1: Spectral results of a 12-bit ADC 

Method THD (dB) SFDR (dB) 

Coherent Unclipped (Reference) -70.3 73.9 

Method B (No interpolation) -70.5 74.7 

Proposed Method(With Interpolation) -70.8 74.3 

 

TABLE 3.2: Spectral results of a 16-bit ADC 

Method THD (dB) SFDR (dB) 

Coherent Unclipped (Reference) -93.1 97.7 

Method B (No interpolation) -79.7 84.2 

Proposed Method (With Interpolation) -93.3 97.7 

 

The flow chart to perform accurate ADC spectral testing with non-coherent 

sampling and over-ranged input using the proposed FERARI method is shown in Fig. 

3.13. The steps in solid rectangle can be used when the output is non-coherently sampled 

while the steps in dotted rectangle can be used when the output is clipped. 

E) Comparison with Four Parameter Sine Fit Method 

The fundamental identification method in Section A can be replaced with the 

four parameter sine fit method as described in [8] with slight modification. Both the 

methods provide accurate estimates of the fundamental. However, the proposed method 

is more computationally efficient than the four parameter sine fit method. Using four 

parameter sine fit method, all unclipped points in data are considered to perform non-

linear least squares. This includes large data set and several iterations to obtain 
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convergence which consumes large computation time. However, in the proposed 

method, the time consuming blocks are FFT and linear least squares method. As M is 

usually selected to be a power of 2, FFT consumes very small amount of time. Since a 

very small number of points around the mid-range codes are considered for linear least 

squares (as shown in Fig. 3.8), this operation also does not consume more time. The 

other factor which makes the proposed method more time efficient compared to the four 

parameter sine fit method is that, there is no necessity to perform iterations. 

 

IV. SIMULATION RESULTS 

The accurate functionality and robustness of the proposed method is shown using 

simulation results in this section. 

A) Functionality 

A 16-bit ADC with INL of 1.5LSB was generated using MATLAB. A total of 

8192 points were sampled. The ADC was first tested with a sine wave that is coherently 

sampled and not clipped. The signal is generated such that it covers the ADC input range 

without getting clipped. The values of THD and SFDR obtained are considered as the 

reference values. The same ADC is later fed with an over-ranged, non-coherently 

sampled input signal. The output is processed using the proposed method and the values 

of THD and SFDR are compared. 
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Acquire M points, yA

Estimate Jint, δ0 and ϕ0 using (3.14,3.16,3.17)

Estimate Δδ and Δϕ using Least Squares on (3.19)

Construct intial estimate of fundamental, zi (3.20)

Obtain ez and perform DFT to estimate ΔA (3.23)

Obtain final estimate of fundamental, z using (3.24)

Subtract z from y and obtain ef and er

Construct a coherent fundamental, v using (3.25)

Interpolate the information of error on to each point 

in v and add that to v to get f

Perform DFT on f

Compute accurate spectral characteristics

Obtain y using equation (3.7)

Estimate A and VOS using (3.11-3.12)

Perform DFT on y, Yk

 

Figure 3.13: Flow chart to perform accurate ADC spectral test using proposed method 

on Non-coherently sampled, clipped ADC output. Solid rectangle steps used when signal 

is non-coherently sampled. Dotted rectangle steps used when output is clipped. 
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Fig. 3.14 shows the spectrum of ADC output when it is coherently sampled. The 

value of J = 3241. It can be seen that there is no leakage in the spectrum and the values 

of THD and SFDR obtained are listed in Table 3.3. Fig. 3.15 shows the spectrum of the 

same ADC output when a non-coherently sampled, over-ranged input signal is fed to the 

ADC. The value of J is 3241.199 and over-range is 0.78%. It can be seen that there is 

both leakage and severe distortion in the spectrum. Later the same ADC output is 

processed using the proposed method and the spectrum obtained is as shown in Fig. 

3.16. The spectrum is clean and it exactly matches with the spectrum obtained using 

coherent sampling. The values of THD and SFDR obtained using proposed method are 

listed in Table 3.3. From Table 3.3 and Fig. 3.16, it can be said that the proposed method 

accurately estimates the THD and SFDR of a non-coherently sampled, clipped ADC 

output. 

 

 

Figure 3.14: Spectrum of a coherently sampled, unclipped ADC output  (J = 3241) 
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Figure 3.15: Spectrum of DFT of a non-coherently sampled, clipped ADC output (J = 

3241.199  δ = 0.199, %over-range = 0.78) 

 

 

Figure 3.16: Spectrum of a non-coherently sampled, clipped ADC output after using the 

proposed FERARI method (J=3241.199 δ = 0.199, % Over-range = 0.78) 

 

TABLE 3.3: Spectral results of 16-bit ADC (Fig. 3.14 & Fig. 3.16) 

Method THD (dB) SFDR (dB) 

Coherent + Unclipped + DFT -93.7 99.2 

Non-coherent+Clipped + FERARI -94.1 99.2 
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B) Robustness 

The robustness of proposed method is shown with respect to non-coherent 

sampling and amplitude clipping up to 2%. A 16-bit ADC was generated using 

MATLAB with an INL of 1.8 LSB. A total of 500 runs with randomly selected values of 

δ and over-range were run. The values of δ vary from -0.5 to 0.5 (total range) and over-

range percentage was in the range 0 to 2. The data record length for each run was 8192. 

Fig. 3.17 and Fig. 3.18 show the errors in estimating the values of THD and SFDR with 

δ respectively. Fig. 3.19 and Fig. 3.20 show the errors in THD and SFDR with percent 

input over-range respectively. The maximum error obtained in estimating THD and 

SFDR is about 1dB. This shows that the method is robust to both non-coherent sampling 

and amplitude over-range up to 2%. 

 

 

Figure 3.17: Error in estimating THD values (in dB) using FERARI method over whole 

range of δ. 
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Figure 3.18: Error in estimating SFDR values (in dB) using proposed FERARI method 

over whole range of δ. 

 

 

Figure 3.19: Error in estimating THD values (in dB) using proposed FERARI method 

for different input over-range amplitudes. 

 

 

Figure 3.20: Error in estimating SFDR values (in dB) using FERARI method for 

different input over-range amplitudes. 
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V. MEASUREMENT RESULTS 

In this section, the proposed method is verified using measurement results from 

industry labs using a commercially available high resolution ADC. 

The ADC that is used is ADS8318 which is a 16-bit Successive Approximation 

Register (SAR) ADC clocked at 500 kSPS. The input range of ADC is 0 to 5V. Fig. 3.21 

shows the test setup. The input signal is followed by two band pass filters each with 

center frequency at 10 kHz. The output of the second band pass filter is fed to the input 

of ADC. A total of 8192 samples are collected.  

The input frequency to achieve coherent sampling is given by 10.070800781 kHz 

which gives a value of J = 165. The blue spectrum in Fig. 3.22 shows the spectrum 

obtained using coherently sampled and unclipped data. It can be seen that there is no 

leakage in the spectrum.  

Later, the frequency of input signal is changed to 10.049476891 kHz and the 

input amplitude is slightly increased to be about 1.5% more than the ADC input range. 

As a result, the input signal is both non-coherently sampled (J=164.65, δ ≈ -0.35) and 

over-ranged (1.5%). The green plot in Fig. 3.22 shows the spectrum obtained without 

any correction. As expected, there is huge spectral leakage and higher distortion in the 

spectrum. The same time domain data is then processed using the proposed method. The 

red plot in Fig. 3.22 shows the spectrum obtained using the proposed FERARI method. 

It can be seen that the red spectrum (Non-coherent + Clipped + Proposed method) 

matches exactly with that of the blue spectrum (Coherent + Unclipped). The values of 

THD, SFDR and SNR obtained using standard coherent sampling method on unclipped 
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data and proposed method on non-coherently sampled, clipped data are listed in Table 

3.4. From Table 3.4 and Fig. 3.22, the accurate functionality of the proposed method 

with non-coherently sampled and over-ranged input is verified. 

 

Figure 3.21: Test setup for Measurement data of ADS8318. 

 

 

Figure 3.22: Spectrums showing the accurate functionality of the proposed method. 

BLUE: Spectrum with Coherently sampled, unclipped data, GREEN: Spectrum with 

clipped and non-coherently sampled data, RED: Spectrum with Non-coherently sampled, 

Clipped data using the proposed FERARI method. (δ=-0.35, % over-range = 1.5)  
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TABLE 3.4: Spectral results of ADS8318 from Fig. 3.22 

Method THD(dB) SFDR(dB) SNR(dB) 

Non-coherent + Clipped + 

FERARI (Red plot in Fig. 3.22) -107.6 109.2 95.7 

Coherent + Unclipped + DFT 

(Standard, Blue plot in Fig. 3.22) -107.5 108.5 95.8 

 

The robustness of the proposed method is also shown using measurement data. 

The frequency of input signal is varied from 10.040283203 kHz to 10.101318359 kHz so 

that the value of J varies from 164.5 to 165.5 respectively. This covers the whole range 

of δ from -0.5 to 0.5. For each frequency, the input was over-ranged from 0 to 2%. As a 

result, the input signal to each test run is both non-coherently sampled and over-ranged. 

The values of THD, SFDR and SNR with different over-range levels and different 

values of δ are plotted in Fig. 3.23, Fig. 3.24 and Fig. 3.25 respectively. The accurate 

values of THD, SFDR and SNR of the ADC to be compared are given in Table 3.4 

(using coherent sampling). The variation of THD and SFDR is expected as only 8192 

points are sampled to test a 16-bit ADC. It can be seen that the proposed method 

accurately estimated the spectral parameters and is robust to any non-coherency and 

over-range up to 2%. As a result, the proposed method can be used for BIST applications 

without precise control of frequency and amplitude of test input, thus, reducing test cost. 
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Figure 3.23: Plot showing the robustness of proposed method. THD values measured 

using the proposed method for various input over-range percentages and different values 

of δ. (THD for coherent sampling = -107.5 dB) 

 

 

 

Figure 3.24: Plot showing the robustness of proposed method. SFDR values measured 

using the proposed method for various input over-range percentages and different values 

of δ. (SFDR for coherent sampling = 108.5 dB) 
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Figure 3.25: Plot showing the robustness of proposed method. SNR values measured 

using the proposed method for various input over-range percentages and different values 

of δ. (SNR for coherent sampling = 95.8 dB) 

 

VI. CONCLUSION 

A new test method that accurately estimates the spectral characteristics of an 

ADC with non-coherently sampled and over-ranged input was proposed. This relaxes the 

requirement to have precise control over frequency and amplitude of input signal for 

spectral testing. A new computationally efficient method to identify the over-ranged, 

non-coherently sampled fundamental using time domain and frequency domain data was 

described. The residue obtained after subtracting the estimated non-coherent 

fundamental is interpolated onto a coherently sampled signal to obtain accurate spectral 

results of ADC. The accurate functionality and robustness of the proposed method for 

any non-coherency and over-range up to 2% was presented using simulation results on 

16-bit ADCs. The proposed method was also verified for functionality and robustness 

using a commercially available high resolution 16-bit SAR ADC. The method can be 
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readily used in applications, where in, it is challenging to obtain precise control over 

frequency and amplitude of test signal, such as, BIST ADCs. 
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CHAPTER 4 

A LOW COST METHOD TO TEST HIGH RESOLUTION 

ANALOG-TO-DIGIAL CONVERTERS USING NON-

LINEAR INPUT AND NON-COHERENT SAMPLING  
 

Spectral testing is one of the most important tests performed to characterize 

Analog to Digital Converters (ADC). The test cost of ADC increases with increase in the 

resolution of ADC as, it is required to acquire a signal source that is about three to four 

bits more pure than the ADC. Also achieving coherent sampling is one of the major 

bottlenecks to perform spectral testing. In this chapter, a low-cost method is proposed 

that accurately estimates the spectral characteristics of a high resolution ADC using a 

low-cost impure (non-linear) input signal that is non-coherently sampled. A technique to 

characterize the nonlinear input signal when it is non-coherently sampled is explained in 

detail. Simulation results show that the proposed method can accurately test a 15-bit 

ADC using an input signal with Spurious Free Dynamic Range equal to 59dB (about 10-

bit pure signal). The robustness of the proposed method with respect to any level of non-

coherency is also shown. 

 

I. INTRODUCTION 

When testing an Analog to Digital Converter (ADC) for spectral parameters, the 

non-linearity of the ADC is tested using parameters defined in Chapter 1 such as Total 

Harmonic Distortion (THD), Spurious Free Dynamic Range (SFDR), Signal to Noise 

Ratio (SNR), etc. (equation 1.8). To accurately obtain the above parameters, it is ideally 
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required to use a pure signal source which has only one frequency called the fundamental 

frequency. However, in real world it is impossible to find such pure (or linear) signal 

sources. The signal source would be non-linear and would contain other frequency 

components called harmonics, which are integer multiples of the fundamental frequency. 

Since the signal source cannot be obtained without harmonics, it is recommended to use 

signal sources that have very less power in the harmonics in order to test ADCs. 

Typically, to test an N-bit ADC, it is recommended to use a signal source with resolution 

of at least N+3 bits [1]. This implies that the harmonic with maximum power in the input 

signal is about 10 times smaller than that of the ADC under test. With such an input, the 

spectral characteristics of ADC can be accurately estimated, as the harmonics in the input 

signal are considered negligible compared to those of the ADC. 

With increase in the resolution of ADCs over time, it becomes a challenge to 

design very pure signal sources. For example, to test a 16-bit ADC, it is required to obtain 

an input sinusoid signal that has THD of about -120dB (or about 19 to 20 bit pure). This 

requirement on THD of the input signal keeps increasing as the resolution of ADC 

increases. Designing such signals is very expensive as it includes huge design effort. 

Furthermore, in production test, the ADCs are tested using an Automated Test 

Equipment (ATE) that contains a signal source. The purity of the signal source on the 

ATE might not be sufficient to test a high resolution ADC. In such cases, it is required to 

buy a new ATE that contains a highly linear sinusoid signal generator. This results in 

additional test cost due to the following reasons. First, designing a high pure signal source 

itself is expensive and second, buying an ATE with such a signal source adds more to the 
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test cost. Hence, it is required to develop a test method that can relax the condition to use 

a pure sine source to test ADCs. Such methods could decrease the test cost. 

Another challenging requirement to perform spectral testing is to achieve coherent 

sampling. As mentioned in Chapter 2, if the sampling is not coherent, the spectrum of the 

ADC output would contain severe leakage, which results in inaccurate spectral 

characteristics. 

Over the years, work is being done to relax both the above conditions (pure input 

source and coherent sampling). One class of work relaxes the condition of coherent 

sampling alone to perform spectral testing. Such methods include windowing technique 

[1-4], four parameter sine fitting technique [1,5-7], filter bank method [8], resampling 

method [9], singular value decomposition method [10] and fundamental identification 

and replacement methods [11-13]. However, all the methods can be used only when the 

input signal is pure (that is about 10 times more pure than the ADC). 

Another class of work corresponds to relaxing the condition to have highly pure 

input signals. Such methods could decrease the test cost by removing the design effort for 

building high resolution signals. In [14], a method that relaxes the above requirement was 

proposed. Two impure (non-linear) spectral related excitations were used as inputs to the 

high resolution ADC and the outputs of ADC for both excitations were processed to 

accurately estimate the spectral characteristics of ADC. Simulation results were presented 

where in a 16-bit ADC was accurately tested using a 55dB pure input signal. The 

proposed method however assumed coherent sampling. In [15], a similar technique was 

used to validate the method in [14] using experiments. 
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In both the above mentioned classes of work, only one of the two conditions was 

relaxed to perform spectral testing. However, in practical applications, it would be more 

cost effective if both the conditions (coherent sampling and pure input source) can be 

relaxed simultaneously. In this chapter, a test method that can simultaneously eliminate 

the requirement of both coherent sampling and pure input source to test high resolution 

ADCs is presented. The method is proposed from the application of production test where 

in a single low pure signal source is present and is non-coherently sampled to test high 

resolution ADCs. The remaining chapter is arranged as follows. Section II discusses the 

issues with non-coherent sampling and using impure sine sources. The new test method is 

proposed in Section III. Section IV provides simulation results and section V concludes 

the chapter. 

 

II. ISSUES WITH NON-COHERENT SAMPLING AND NON-LINEAR 

(IMPURE) INPUT SOURCE 

 

The procedure to perform conventional spectral testing of ADCs is provided in 

chapter 1. In this section, the issues with using a non-coherently sampled input and a 

non-linear input source to test a high resolution ADC are discussed. 

A) Non-coherent sampling 

The issue of non-coherent sampling is revised again in this section for ease in 

explanation. Considering only the effect of non-coherent sampling and assuming all the 

other four conditions mentioned in chapter 1 are satisfied, the following analysis is 

performed. 
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Let fSig be the frequency of input signal, fSamp be the clock frequency, M be the 

total number of data points recorded to measure the spectral characteristics and J be the 

total number of periods of the input signal sampled in M points. The four parameters are 

related by equation (4.1).  

Sig

Samp

f
J M

f
                                                       (4.1) 

The M point data record is said to be sampled coherently if J in (4.1) is an integer 

and, if J is not an integer, it is said to be non-coherently sampled. Since, the effects of 

non-coherent sampling are investigated, in this section J is considered to be a non-integer.  

Let x(t) be the pure input to ADC under test and is given by equation (4.2). Here A 

is the amplitude of the fundamental and w(t) is the noise at time t. 

     cos 2 Sigx t A f t w t                                            (4.2) 

Let x[n] be the analog representation of n
th

 digital output of ADC. x[n] is given 

by (4.3) after calibrating for offset and gain error. Also, the higher order harmonics in the 

output of ADC are neglected in (4.3). Only the first H harmonics are considered for 

analysis as mentioned in chapter 1. 

 
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2 2
[ ] cos cos
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h h
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J hJ
x n A n A n w n
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 



   
       

   
                     (4.3) 

where ϕ is the initial phase at which the ADC output is sampled, Ah and ϕh are the 

amplitude and the initial phase of h
th

 harmonic of ADC respectively. For non-coherent 

sampling, J in (4.3) is not an integer. 
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The output of ADC, x[n], in (4.3) can also be represented by the following 

equations (4.4 – 4.5). 

 
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                 (4.5) 

where a1 and b1 contain the information of amplitude and phase of fundamental, ah and bh 

contain the amplitude and phase information of h
th

 harmonic in ADC. It can be seen that 

all the three equations are different representations for the same ADC output. The 

parameters in the three equations are related by equations (4.6 – 4.9) 

2 2

1 1A a b                                                         (4.6) 

1 1

1

tan
a

b
   
  

 
                                                     (4.7) 

2 2

h h hA a b                                                      (4.8) 

1tan h
h

h

a
h

b
    

   
 

                                             (4.9) 

For convenience, in this chapter the output equation represented by (4.4) is 

considered for analysis. To obtain the spectrum of this ADC output, DFT is performed on 

equation (4.4) to obtain Xk given by (4.10). Xk is the DFT coefficient of k
th

 frequency bin. 
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Since non-coherent sampling is considered, J in (4.4) can be given as the sum of 

Jint and δ, where Jint is the integer part of J and δ is the non-integer part of J. Using this J 

and substituting equation (4.4) in (4.10) and simplifying, the k
th

 DFT coefficient can be 

given as shown in equation (4.11). 
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 (4.11) 

From (4.11), it can be said that, the contribution from fundamental and 

harmonics on to other frequency bins is no longer zero due to the presence of non-

integer δ. XJint not only contains the information of fundamental, but also contains the 

information of harmonics due to leakage. 2XJint not only contains the information of 
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second harmonic but also contains information of fundamental and other harmonics. 

Similarly, the power from each frequency component could leak into the surrounding 

bins. This leakage phenomenon is shown in Fig. 4.1 which is a spectrum of a non-

coherently sampled data. Hence, the output of a non-coherently sampled data cannot be 

used directly to estimate the spectral characteristics. 

 

Figure 4.1: Power Spectrum of a non-coherently sampled data. 

 

B) Impure (Non-linear) Signal Source 

Another requirement to perform ADC spectral test is to acquire an input signal 

which is about 3 to 4 bits more pure than the ADC under Test. In this section, the issue 

with using non-linear input source to test high resolution ADC using conventional 

method is described. 

If the input signal to the ADC under test is not a pure signal, x(t) is no longer a 

pure source as given by (4.2). The impure signal source xI(t) can be given by (4.12). 
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where αh0 and βh0 contain the amplitude and phase information of h
th

 harmonic present in 

input signal xI(t). The amplitude of fundamental component in xI(t) is given by A’ so that 

the peak-to-peak voltage of xI(t) is within the input range of ADC under test. It can be 

seen that the notation used in equation (4.12) is similar to that used in equation (4.4) for 

convenience. 

With impure signal source (given by xI(t)) as input to the ADC under Test, the 

output of ADC, x’[n], can be given as (4.13) [14].  
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   (4.13) 

where A1 is the amplitude of fundamental in ADC output x’[n], w[n] is noise in n
th

 

sampled point and αh, βh contain the amplitude and phase information of h
th

 harmonic in 

input signal. αh and βh in (4.13) are dependent on the input impedance of ADC under test 

and on the values of αh0 and βh0. If the input impedance of ADC under test is infinite, the 

values of αh and βh in (4.13) would be equal to the values of αh0 and βh0 in (4.12). ah and 

bh contain the amplitude and phase information of h
th

 harmonic in ADC under test. To 

obtain the spectral characteristics of ADC, it is required to obtain the information of ah 

and bh. 

Equation (4.13) is obtained after neglecting the higher order error terms that 

result from interaction between higher order harmonics (Eq. 6 in [14]). The validity of 

equation (4.13) is verified using simulation results. An input signal with harmonics as 

mentioned in equation (4.12) is generated in MATLAB. The values of αh0 and βh0 (for 
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each h) are noted. A 16-bit ADC with an INL of 1.5LSB and an input impedance of 

infinity is also generated. A total of 32768 points were considered for analysis and the 

SNR of the ADC was 94.2dB. A pure input signal that is coherently sampled is fed into 

the 16-bit ADC. The output of ADC using a pure source with coherent sampling is 

obtained and the values of ah and bh can be obtained from the DFT of ADC output as 

described in Chapter 1 (for standard testing). The values of ah and bh are noted down.  

Later the same impure input (with the same values of αh0 and βh0) is fed to the 

16-bit ADC considered above. The output of ADC is coherently sampled and taking 

DFT gives the values of harmonics in the output of ADC. Let Ph and Qh be the 

parameters that contain the information of amplitude and phase of h
th

 harmonic in ADC 

output which is given by (4.14).  
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         (4.14) 

It is assumed that the following two equations (4.15-4.16) are satisfied for the 

equation in (4.14) for each value of h from 2 to H. γh and ρh are the other terms in Ph and 

Qh respectively that are due to the high order harmonic terms (considered negligible).  

h h h hP b                                                          (4.15) 

h h h hQ a                                                          (4.16) 

Let γ, ρ and η be defined as vectors that are shown in equations (4.17 - 4.19).  

 2 3 . . . H                                                   (4.17) 
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 2 3 . . . H                                         (4.18) 

                                                   (4.19) 

In (4.13), it is assumed that γh and ρh are negligible for all h (h = 2, 3, …, H). 

This assumption is validated by simulating 1000 runs in MATLAB. Fig. 4.2 plots the 

maximum value of η with respect to the SFDR of input signal for each run. It can be 

seen that the maximum values of η are in the range of 10
-7

 which is close to the noise 

floor of the ADC. As a result, it can be said that the assumption in equation (4.13) is 

valid and it can be used to model the output of ADC when an impure signal (about 10-bit 

pure) is fed into a high resolution ADC. Here input signal with SFDR about 60dB (or 

10-bit pure) is considered as it is relatively easier to design (or procure) a signal 

generator that is about 10-bit pure. 

 
Figure 4.2: Figure plotting the maximum of η for each of the 1000 runs. It can be seen 

that the error is very small and is limited by the noise floor in the 16-bit ADC. Hence, 

with signals about 10-bit pure, Eq. 4.13 can be used for analysis. 

 

 

Since the input signal is not pure than the ADC under test, it can be said that in 

equation (4.13) βh > bh and αh > ah. As a result, even if the sampling is coherent, taking 
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DFT of x’[n] in (4.13) would not result in accurate spectral results of ADC under test. 

The results obtained from DFT with coherent sampling would include the information of 

harmonics of both input and ADC under test. Hence, it is not possible to obtain the 

spectral characteristics of an ADC directly from DFT of output data if the input signal is 

not spectrally pure.  

C) Non-coherent sampling and Impure Input Signal source 

If an impure input that is non-coherently sampled is used to test a high resolution 

ADC, the spectrum obtained after taking DFT on the output of such ADC is shown in 

Fig. 4.3. It can be seen that the spectrum not only has leakage due to non-coherent 

sampling, but also has higher harmonics due to the non-linearity of the input signal. The 

spikes in the spectrum are due to the harmonics in the input signal and are not due to the 

harmonics in the ADC, as the input signal is less pure than the ADC under test. As a 

result, accurate spectral parameters cannot be estimated from the spectrum in Fig. 4.3. 

So, it is required to develop a new method that can accurately test high resolution ADCs 

using non-coherently sampled, non-linear input source to decrease the test cost. 

 
Figure 4.3: Spectrum of high resolution ADC with non-coherently sampled impure 

signal. 
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III. THE PROPOSED METHOD 

The practical application of a production test setup using low cost testers is 

considered in this chapter as they do not have very pure signal sources. It is assumed that 

there is one signal source on the tester and different ADCs are tested at a fixed frequency 

and input range. 

The test setup for the proposed method is shown in Fig. 4.4. The test is done in 

two steps. Step 0 is performed once and it characterizes the impure signal source with a 

very high resolution ADC, called Gold ADC. It should be made sure that the resolution of 

Gold ADC be greater than that of the ADC under test by at least 3 bits. The 

characterization of input source is done at a given frequency and input range. If there is 

any change in frequency or input range to be tested, step 0 needs to be repeated before 

starting to test the ADCs for the new frequency and input range. 

 

xg[n]

y[n] v[n]Proposed 
Method

Characterize 
x(t)

Gold ADC

ADC Under Test

Impure Input
Step 0 (one time operation)

Step 1

 
Figure 4.4: Test Setup for Proposed method 

 



www.manaraa.com

101 

 

 

The regular production testing of ADCs is performed from Step 1. The 

information of impure source characterized in Step 0 is used to test high resolution ADCs 

in Step 1 using proposed method. The details of proposed method are presented below. 

A) Step 0: Characterize the input Signal 

In this section a method to characterize the non-coherently sampled input signal 

source is presented. The input signal not only contains fundamental but also contains 

harmonics as given by (4.12). The impure input signal is first fed into a Gold ADC and 

the output of Gold ADC is acquired and analyzed to accurately estimate the information 

of fundamental and harmonics of impure input signal. 

Let xI(t) in (4.12) represent the impure signal that needs to be characterized. This 

is fed into Gold ADC. The amplitude of fundamental is selected such that the ADC 

output is not clipped. Let xg[n] in (4.20) represent the analog interpretation of digital 

output of Gold ADC when xI(t) in (4.12) is the input and after considering the first H 

harmonics. Since, the proposed method also aims at relaxing the condition of coherent 

sampling, J in (4.20) is not an integer. J can be given as the sum of Jint and δ as 

mentioned in Section IIA. 
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(4.20) 

where A1 is the fundamental amplitude in xg[n], αh and βh contain the amplitude and 

phase information of input signal’s h
th

 harmonic. ag,h and bg,h contain the amplitude and 
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phase information of Gold ADC’s h
th

 harmonic. As the input signal xI(t) is impure and 

the resolution of Gold ADC is about 3-4 bits more than that of the ADC under test, it can 

be said that βh >> bg,h and αh >> ag,h. As a result, the output of Gold ADC xg[n] can be 

given as (4.21). 
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         (4.21) 

From the output of Gold ADC given by (4.21), the input signal can be 

characterized by estimating A1, J, ϕ, βh and αh (for h varying from 2 to H). The 

fundamental identification method proposed in chapter 2 cannot be used in this situation. 

It is because that method was based on the assumption that the power of harmonics is 

negligible. However, in (4.21), it can be seen that the harmonics are no longer negligible 

and a new method to identify all the parameters in (4.21) is required. A method to 

accurately identify all the above parameters using frequency domain data is provided. 

1) Identify non-coherently sampled impure input signal (Jint, A1, ϕ, δ, αh, βh) 

 

First, the time domain data xg[n] is converted to frequency domain data using 

DFT on xg[n] to obtain Xg,k. Xg,k in (4.22) corresponds to the DFT value of k
th

 frequency 

bin. 

  
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From the DFT of xg[n], the value of Jint can be obtained by considering the 

frequency bin index that contains the maximum power in the spectrum excluding the bin 

corresponding to DC component (k=0). The mathematical equation for estimating Jint can 

be given as (4.23). 

int ,
1 ( /2)

arg max g k
k M

J X
 

                                                    (4.23) 

As J is not an integer, the value of Xg,k after substituting (4.21) in (4.22) can be 

obtained as (4.24) after simplification. 

From (4.24), Xg,k can be given as sum of a real part and an imaginary part as 

shown in equation (4.25), where grk and gik are the real and imaginary parts of Xg,k 

respectively. For k
th

 frequency bin, the values of grk and gik are given by equations (4.26-

4.27) from (4.24). 

The total number of parameters that need to be estimated from (4.21) is 

2*H+1 (3 parameters δ, A1 and ϕ for fundamental and 2 parameters βh and αh for h
th

 

harmonic, h = 2, 3,…, H). From (4.26) and (4.27), it can be seen that both grk and gik are 

non-linear functions of Jint and δ. Since Jint is accurately estimated from (4.23), grk and 

gik are non-linear functions of δ. As a result, in order to accurately estimate all the 

parameters, Newton method for non-linear equations is used [16]. Since it is an iterative 

process, the initial values of all 2*H+1 parameters are required. The initial estimates of 

δ, A1 and ϕ are obtained using equations (4.28-4.30) [17] from (4.22). The initial 

estimates of βh and αh (for all h = 2,3,..,H) are set to 1 as they are small.  
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                                 (4.30) 

Equations (4.28-4.30) are obtained after neglecting the effect of harmonics on 

Xg,Jint-1, Xg,Jint and Xg,Jint+1. From equations (4.25-4.27), it can be seen that, two equations 

can be obtained for each value of k; one for real part and the other for imaginary part of 

Xg,k.  

Let I be given as in (4.31) and kSet in (4.32) contain values of frequency bin 

indices that are considered to obtain a set of equations to solve for 2*H+1 parameters. 

intI J                                                       (4.31) 

 1 ,( ), ( 1), (2 1), (2 ), (2 1), (3 1),

(3 ), (3 1),....., ( * 1), ( * ), ( * 1)

I I I I I I I
kSet

I I H I H I H I

      
  

    
          (4.32) 

A total of 3*H values of frequency bin indices (k) are selected in kSet which 

results in a total of 6*H equations. The 6H equations considered are given in (4.33) as f1, 

f2, …, f6H. Overall, a total of 6H equations can be considered to estimate the 2H+1 

parameters. 
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         (4.33) 

Let γ be the vector that contains all the parameters that needs to be estimated 

as shown in (4.34) and f  be the vector containing the 6H equations as shown in (4.35). 

The size of γ is ((2H+1) x 1) and the size of f is (6H x 1). 

 1 2 2 . . .
T

H HA                               (4.34) 

 1 2 3 6 2 6 1 6. . .
T

H H Hf f f f f f f                         (4.35) 

To perform newton method, the Jacobean of f with respect to γ is required. 

Let Jb be the Jacobean which is given by (4.36). The size of Jb is (6H x (2H+1)). The 

equations to obtain the Jacobean matrix for given index k are given in Appendix. 
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              (4.36) 

Let γ
i
 represent the values of parameters estimated in i

th
 iteration,  f

i
 be the 

vector of f (in 4.35) obtained by substituting the parameter values in i
th

 iteration and Jb
i
 

be the Jacobean matrix obtained by substituting the parameters obtained in i
th

 iteration. 

For i
th

 iteration, the value of γ
i
 is obtained using equation (4.37). The “\” operator is the 

least squares operator which performs on the Jacobean matrix, Jb and matrix of 

equations, f. The stopping criterion for the iterations can be either the total number of 

iterations (say 10) or the convergence of γ (such as |γ
i
-γ

i-1
|<ε). 

1 1 1\i i i iJb f                                                           (4.37) 

In other words, it can be mentioned that the newton method is applied to 

solve the following minimization problem given by (4.38) for γ. 

2

2
min f


                                                             (4.38) 

With this, the final value of γ that contains the accurate estimates of A1, ϕ, δ, 

α2, β2, …, αH, βH as   ̂  ̂  ̂   ̂   ̂     ̂   ̂ respectively are obtained. Hence, the 

non-coherently sampled impure input is characterized using Gold ADC. 
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B) Step 1: Testing the ADC (Device Under Test) 

With the low-cost non-linear input characterized for a given amplitude and 

frequency in Step 0, the production test of ADCs can be performed in Step 1. It should 

be noted that Step 0 is only performed once.  

Since the input to Gold ADC and the ADC under test are obtained from the same 

signal source, xI(t) in (4.12) is again considered as the input to ADC under test. 

Assuming the input impedance of ADC under test is the same as that of the Gold ADC, 

the output of ADC under test can be given as y[n] in (4.39). 

 
     
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h h h h

h
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A n
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   



  
  

  
    
          

    


   (4.39) 

where A1 is the amplitude of fundamental in y[n] and ah and bh contain the amplitude 

and phase information of h
th

 harmonic of ADC under test. The values of αh and βh in 

equations (4.39) and (4.21) are the same as the input impedance of Gold ADC and ADC 

under test is same. θ is the initial phase at which the output of ADC (y[n]) is sampled. 

To obtain the spectral characteristics of ADC, it is required to accurately estimate 

the information of harmonics of ADC (ah and bh in (4.39)). In (4.39), the contribution of 

harmonics from the impure input can be eliminated using the parameters estimated from 

Step 0 (αh and βh). However, it is required to estimate the initial phase θ in (4.39). To 

obtain accurate estimates, the procedure mentioned in Step 0 to identify the parameters 

is used on the output of ADC under test, y[n]. With this, the estimate of θ, ( ̂) in (4.39) 

is obtained. Using  ̂ and the parameters estimated in step 0, the contribution of non-
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coherently sampled impure input in the output of ADC under test can be eliminated to 

get zy[n] as shown in (4.40-4.41). 
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           (4.40) 
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                 (4.41) 

For each value of n in zy[n], the information of harmonics and noise at the codes 

hit by the ADC under test (y[n]) is obtained. But, this set of codes is not the same as the 

set of codes hit when using an ideal test signal that is pure and coherently sampled. To 

get the information of codes hit in an ideal test setup, a pure coherently sampled signal, 

p[n], is generated using the information of A1, Jint and θ as shown in (4.42). 

  int
1

2
cos

J
p n A n

M




 
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 
                                      (4.42) 

It is required to get the information of harmonics and noise of ADC on the codes 

hit by p[n]. In order to obtain this information corresponding to each code in p[n] (say 

p[c]), two codes in y[n] that are near the code that is considered (p[c]) are used and 

interpolation of zy[n] at the two codes in y[n] is performed. Fig. 4.5 provides an example 

for interpolation. In Fig. 4.5, y-axis represents the ADC codes that are hit and the x-axis 

represents the information of harmonics and noise of ADC at each code hit. The codes 

hit in y[n] (x symbol in Fig. 4.5) are sorted and the corresponding values of zy[n] are 

plotted (+ symbol in Fig. 4.5). Similarly the codes hit in p[n] (o symbol in Fig. 4.5) can 
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also be sorted on y-axis in Fig. 4.5. Let p[c] be the considered code for which the 

information of harmonics and noise, zp[c], needs to be estimated. As shown in Fig. 4.5, 

let y[a] and y[b] be the codes that were hit such that y[b] < p[c] < y[a]. Let zy[a] and 

zy[b] correspond to the information of harmonics and noise of ADC on codes hit by y[a] 

and y[b] respectively. The value of zp[c] (Δ symbol in Fig. 4.5) can be obtained by linear 

interpolation as given in equation (4.43). 

 
Figure 4.5: Figure illustrating the method of interpolating zy[n] to obtain zp[n] 
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After obtaining the information of harmonics and noise on each code hit by p[n], 

this information is added to p[n] to obtain the final time domain output data given by 

v[n] as shown in (4.44). 

v[n] = p[n]  + zp[n]                                                    (4.44) 

v[n] in (4.44) contains the fundamental and the information of harmonics and 

noise of ADC under test. Taking DFT of v[n] would result in estimating accurate 

z
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spectral characteristics of ADC under test as the fundamental in v[n] is coherently 

sampled and the information of input non-linearity is eliminated in v[n]. 

 

IV. SIMULATION RESULTS 

In this section, simulation results are presented that show the accurate 

functionality and robustness of the proposed method when a non-coherently sampled, 

impure input source is used to test a high resolution ADC. 

A 15-bit ADC is generated in MATLAB with an INL of 1.6 LSB and a data 

record length, M of 4096. This ADC is the device under test. An input sine wave is 

generated from an oscillator circuit in cadence and the sine wave is used to test the device 

under test. The sine wave has an SFDR of 59dB. First, this sine wave is characterized 

using an 18-bit Gold ADC that is generated in MATLAB. The INL of Gold ADC is 1 

LSB. After characterizing the input signal using Step 0, the same signal is used to test the 

15-bit ADC under test. The spectrums obtained using the above test procedures are 

plotted in Fig. 4.6. 

Fig. 4.6 shows three spectrum plots. The green spectrum is obtained by 

performing DFT on the 15-bit ADC output obtained after sending in the 59dB pure input. 

It can be seen that there is huge leakage in the spectrum as the signal is non-coherently 

sampled. The leakage in the spectrum is so large that it masked the harmonics of input 

signal. The blue spectrum is the spectrum of 15-bit ADC obtained using a pure coherently 

sampled input signal. It can be seen that there is no leakage and this spectrum is used as 

the reference to validate the proposed method. The 15-bit ADC output obtained after 
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feeding the 59dB pure non-coherently sampled input is processed using the proposed 

method and the spectrum obtained after processing is shown in Fig. 4.6 as the red plot. It 

can be seen that the red spectrum exactly matches with that of the blue spectrum. Table 

4.1 provides the numerical values of spectral characteristics such as THD and SFDR 

obtained using the proposed method on non-coherently sampled, impure input and 

compares these characteristics with those obtained using standard method (coherent 

sampling + pure input). It can be said from Fig. 4.6 and Table 4.1 that the proposed 

method can accurately test the spectral characteristics of a high resolution ADC using a 

low linear (impure) source that is non-coherently sampled. Hence, two of the challenging 

conditions required to perform spectral testing are relaxed using the proposed method. 

 

Figure 4.6: Spectrums of a 15-bit ADC with coherently sampled pure input (blue), non-

coherently sampled impure input without (green) / with (red) using proposed method. 
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TABLE 4.1: Spectral characteristics of a 15-bit ADC tested with a Pure Source 

(Standard) and Impure + Non-coherent Source (Proposed) 

Method THD (dB) SFDR (dB) 

Coherent + Pure + DFT (Standard) -86.3 90.8 

Non-coherent + Impure + Proposed -86.6 91.6 

 

To examine the method proposed to characterize the input signal, an impure input 

signal with fundamental and odd harmonics is generated in MATLAB. An 18-bit Gold 

ADC with an INL of 0.85 LSB and infinite input impedance is also generated. The output 

of Gold ADC is acquired and the proposed method to characterize the input using 

Newton method for non-linear equations is used to estimate the values of αh’s and βh’s. 

Since the input signal is generated in MATLAB, the actual values of αh’s and βh’s are 

known. Table 4.2 provides the estimated values of αh’s and βh’s and the error in 

estimating these parameters. It can be seen that the method to characterize the input signal 

accurately estimates the required parameters. The SFDR of input source used is 39dB. 

Using this input and the proposed method, a 15-bit ADC with an INL of 2 LSB is tested 

for spectral characteristics. Fig. 4.7 shows the spectrums obtained for the three cases 

mentioned above. The reference case (coherent + pure source) is given by green 

spectrum, the DFT of ADC output is given by blue spectrum and the red spectrum is 

obtained after processing the ADC output using the proposed method. It can again be 

seen that the green and red spectrums match exactly and the spectral characteristics are 

accurately estimated using the proposed method as shown in Table 4.3. 
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TABLE 4.2: Estimation accuracy of input harmonics (in Step 0) 

  Actual Estimated Error 

α3 0 -8.10E-09 8.10E-09 

β3 0.005003515 0.005003091 4.2E-07 

α5 0 -2.50E-09 2.50E-09 

β5 0.000648456 0.00064869 2.3E-07 

α7 0 1.10E-08 1.10E-08 

β7 0.000168798 0.000168709 8.9E-08 

α9 0 2.50E-08 2.50E-08 

β9 6.17718E-05 6.20273E-05 2.6E-07 

 

 
Figure 4.7: Spectrums of a 15-bit ADC with coherently sampled pure input (green), non-

coherently sampled impure input without (blue) / with (red) using proposed method. 
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TABLE 4.3: Spectral characteristics of a 15-bit ADC tested with a Pure Source (Ideal) 

and Impure + Non-coherent Source (Proposed) 

Method THD (dB) SFDR (dB) 

Coherent + Pure + DFT (Standard) -91.6 94.1 

Non-coherent + Impure + Proposed -91.2 94.0 

 

The robustness of the proposed method with respect to the whole range of non-

coherency (δ ϵ (-0.5 0.5]) for 100 randomly selected δ values is shown in Fig. 4.8. The 

simulation conditions are the same as mentioned above. It can be seen that the error in 

estimating the THD and SFDR values is less than 1.5dB. As a result, the method is 

robust for any non-coherent sampling. 

 
Figure 4.8: THD and SFDR errors for 100 randomly selected δ’s in whole range (-0.5 

0.5] 

 

 

V. CONCLUSION 

A new method was proposed that can accurately estimate the spectral 

characteristics of a high resolution ADC even when the input is impure and is non-
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coherently sampled. The proposed method characterized the input source using a Gold 

ADC and then used this information of input source to test high resolution ADCs under 

test. A detailed explanation of the technique to accurately estimate all the parameters of 

the input signal was provided. Simulation results were presented that show accurate 

functionality and robustness of the proposed method. Two 15-bit ADCs were accurately 

tested using the proposed method with 39dB and 59dB pure input sources. The method 

decreases the test cost by reducing the cost associated with acquiring high linear sources 

and achieving coherent sampling. 
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CHAPTER 5 

ANALYSIS OF PROBABILITY OF METASTABILIY IN 

COMPARATORS AND SUCCESSIVE APPROXIMATION 

ADC 

 

With increase in speed of analog electronics, the issue of metastability is starting 

to become a concern for comparators used in mixed signal circuits. In this chapter, a 

rigorous definition of metastability is proposed that can be used for any circuit exhibiting 

such behavior. The probability of metastability of two different comparator architectures 

is provided using mathematical analysis. It is shown that depending on the time at which 

the probability of metastability is evaluated, one comparator performs better than the 

other. Furthermore, mathematical analysis of probability of metastability is given for 

Successive approximation register Analog-to-Digital Converters with and without using 

metastable detection circuit. It is shown that as the frequency of sampling clock 

increases, the probability of metastability can be decreased by using a metastable 

detection circuit. 
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I. INTRODUCTION 

Analog to Digital Converters (ADC) are one of the major building blocks of 

System on Chip (SoC) circuits. With developments in technology, there is an increase in 

the speed at which SoCs operate. As a result, it is required to design ADCs with higher 

clock speeds. However, with increase in ADC clock speed, one of the issues that arise is 

Metastability in comparators.  

Metastability is a characteristic property of any system that contains either a 

comparator or a flip-flop.  It is defined as the state in which the comparator does not 

provide a valid logic output. Typically, the output of comparator is connected to a digital 

circuit. For accurate operation of the digital circuit, the comparator output should be a 

valid logic “1” or logic “0”. If the comparator is in a metastable state, the digital circuit 

does not function accurately as the input to the digital circuit is not a valid Boolean 

logic. Such cases could result in several problems such as system hang or improper 

operation [1]. As a result, it is very important to analyze the issue of metastability in a 

system and design accordingly. 

The issue of metastability has been studied in the past. In [1], the observations of 

metastable behavior of flip-flops in response to logically undefined input conditions 

were shown. In [2], a first order model for a flip-flop was proposed to evaluate the 

probability of metastability. In [3-6], the effect of metastability in synchronizers or 

arbiters was presented. In [7, 8], techniques such as bit pipelining or cascading 

additional latches that increase the latency of ADC were proposed to tackle the issue of 

metastability in Flash ADCs.  
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In recent years, Successive Approximation Register (SAR) ADCs have been 

gaining a lot of interest due to their power efficiency and digital friendly architecture. In 

[9-11], different techniques to address the issue of metastability in Successive 

Approximation Register (SAR) ADCs were proposed one of which includes a 

Metastable-Then-Set (MTS) algorithm. Using MTS algorithm, the SAR operation is 

stopped as soon as a metastable output is detected, thus saving power in deciding the 

remaining bits. In [12], metastability in synchronous SAR ADC was explained and it 

was shown that metastability induced errors would become an important limitation in 

designing high speed SAR ADCs. An architecture for error correcting SAR ADC was 

presented that used a metastable detection circuit. However, analysis of probability of 

metastability after the error correction is used was not provided in [12]. 

In [5, 13], the output of the latch is connected to two inverters (Jamb latch) to 

reduce the failure rate. Appending inverters to the output of latch would increase the 

effective gain of the system and can help make a faster decision. However, an analysis 

that could determine when the technique is beneficial was not provided. 

Though the issue of metastability was defined earlier as a phenomenon, it is 

required to have a rigorous mathematical definition for metastability in comparators. 

Such a definition could help analyze different techniques used for decreasing the 

probability of metastability and determine the parameters that contribute to metastability. 

In this chapter, a rigorous mathematical definition for metastability in 

comparators is presented along with a method to determine the valid logic levels of the 

output of comparator. The probability of metastability of comparators with and without 
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appending an inverter is analyzed and situations when an inverter improves the 

probability of metastability are discussed. Furthermore, analysis of probability of 

metastability in synchronous SAR ADCs with and without using metastable detection 

circuit is provided. 

The remaining of the chapter is arranged as follows. Section II provides the 

rigorous definition for metastability in circuits. Section III presents a method to 

determine the output voltages of comparator that corresponds to valid Boolean logic. 

Section IV analyzes the probability of metastability of a comparator with and without 

appending an inverter to the output of latch. Section V compares the probability of 

metastability of SAR ADC with and without using a metastable detection circuit. Section 

VI concludes the chapter. 

 

II. METASTABILITY DEFINITION 

Metastability is a characteristic property of any system that contains either a 

comparator or a flip-flop. Typically, the output of comparators is fed to a series of digital 

logic. For accurate functionality of the digital logic, it is required that the output of 

comparator provide a valid logic before the digital circuit is turned on. In other words, at 

the instance when the digital circuit is turned on, the output of comparator should be a 

valid logic 0 or logic 1. If the output of comparator at that instant is not a valid logic 0 or 

logic 1, the system is said to be metastable at that instance. Hence, metastability is a 

phenomenon that is defined at a given instant of time. A rigorous definition of 

metastable system is given below. 
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Metastable Definition: A system is said to be metastable at given time Tx, if there 

exists a time T1 > Tx, such that 

VLMAX < VOUT(T1) < VHMIN                                       (5.1) 

where VLMAX is the maximum voltage value that represents a valid logic “0”, VHMIN is 

the minimum voltage value that represents a valid logic “1” and VOUT(t) is the output 

voltage of the system at time “t” as shown in Fig. 5.1. It is considered that the 

comparator starts to compare at time t = 0. 

t  

Voltage

t = Tx

VHMIN

VLMAX

VOUT1 (Metastable at Tx)

VOUT2 (Not Metastable at Tx)

t = 0

VDD

 

Figure 5.1: Figure illustrating the metastability phenomenon 

 

The region of metastability, VM, of a system at a given time Tx is the set of input 

voltage values that cause the system to be metastable. Pictorially, it can be represented 

as shown in Fig. 5.1. For any time instant after Tx, if the output waveform is within 

VLMAX and VHMIN, the event is metastable at time Tx. It can be seen from Fig. 5.1 that for 

input voltage Vin2, the output voltage waveform (VOUT2) does not fall in the metastable 
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region and hence is not metastable at time Tx. However, for Vin1, the output waveform 

(VOUT1) is within the metastable region and hence the system is metastable at time Tx. 

Once the region of metastability, VM, of a system at a given time Tx is known, 

the probability of metastability, PMS, is obtained by taking the ratio of VM to the total 

input range of the system. 

Let VIN be the input voltage of the system that ranges from –VR to +VR. So, the 

total input range of the system is given as 2VR. With this, the probability of metastability 

of the system is given by (5.2). 

PMS = VM/2VR.                                                    (5.2) 

 

III. METHOD TO DETERMINE VALID LOGIC LEVELS 

Having analytically defined the metastability, it is required to obtain the values of 

VHMIN and VLMAX in Fig. 5.1. Both the values are determined by the digital logic 

following the comparator. As a result, any output voltage value below VLMAX is 

considered as logic 0 and any voltage value above VHMIN is considered as logic 1 by the 

digital circuit. The following discussion provides a method to evaluate VLMAX and VHMIN 

in the simulation domain. 

For simplicity, let us consider that the output of comparator is connected to a 

digital inverter. The first step in obtaining the values of VLMAX and VHMIN is to obtain the 

DC transfer characteristics of the inverter for all corners and different temperatures. 

Later the DC transfer curves using Monte-Carlo simulations including device 
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mismatches and process variations are obtained. The DC transfer curves for all the above 

simulations are plotted in a single plot as shown in Fig. 5.2. Fig. 5.2 shows the DC 

transfer curves of different process corners and two transfer curves obtained at the two 

extreme ends after performing Monte-Carlo simulations. From this plot, to find the trip 

point in each simulation, a line given by VOUT = VIN is drawn. The trip point that 

corresponds to the maximum input voltage value is given as VHMIN and the trip point that 

corresponds to the minimum input voltage is given as VLMAX as shown in Fig. 5.2. This 

implies that for any input voltage of the inverter (output of comparator) greater than 

VHMIN, the digital inverter considers it as a valid logic 1 and for any input voltage of the 

inverter less than VLMAX, the digital inverter considers it as a valid logic 0. As a result, 

all process corners and mismatches were considered to obtain valid logic levels. 

 

Figure 5.2: Transfer function curves for different corners and monte-carlo simulations of 

a digital inverter load (of comparator) to obtain the valid logic levels. Intersection of VIN 

= VOUT line with the extreme ends of transfer curve gives the values of VHMIN and VLMAX 

(valid logic levels). 
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It should be noted that the procedure mentioned above is not limited to inverters 

but can also be used for any digital logic that is present after the comparator. 

 

IV. PROBABILITY OF METASTABILITY OF COMPARATORS WITH AND 

WITHOUT ADDING INVERTERS 

 

Having proposed a rigorous definition for metastability of comparators, the 

probability of metastability of a widely used comparator with and without appending 

inverters to the output of the latch is analyzed in this section. 

The comparator that is considered is shown in Fig. 5.3. Let the comparator be 

called Comparator A. It consists of two NMOS input transistors M1 and M2 that amplify 

the input differential voltage, and a pair of back-to-back connected inverters that form a 

latch. The latch provides a positive pole and eventually pulls one output node to VDD and 

the other output node to VSS depending on the differential input to comparator. Two sets 

of switches (P2, P3 and P4, P5) are used to pre-charge the nodes VON, VOP, VA and VB to 

VDD. The load capacitance is given by CL. If an inverter is connected as the load to the 

comparator, CL is given by the input capacitance of the inverter. CP is the parasitic 

capacitance on nodes VA and VB. 

The operation of the comparator can be described in brief as follows. In the reset 

phase, clock CLK goes low, there by turning M7 off. During this phase, the switches P2-

P5 are turned on, thus pulling nodes VA, VB, VOP and VON to VDD. In the comparison 

phase, clock CLK goes high. This turns on M7 and turns transistors P2-P5 off. If VIN is 

larger than VREF, node VA is pulled down faster than that of node VB. The regeneration 
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in latch (M3-M6) will eventually pull node VON down to VSS and VOP up to VDD. 

Similarly, if VIN is less than VREF, VON is pulled up to VDD and VOP is pulled down to 

VSS.  

CLK CLK
M5 M6

P2 P3
CLK

P4
CLK

P5

CLK
M7

VIN VREF
M1 M2

M3 M4

CL

CL

CP CP

VA VB

VON

VOP

 

Figure 5.3: Schematic of Comparator A 

 

It should be noted that each transistor in the comparator circuit changes the 

region of operation during comparison phase. In [14], the operation of comparator in 

comparison phase is separated into three states. State 1 corresponds to the state when 

CLK is just turned on. In this state, M7 is in triode region and M1, M2 are in saturation 

region while transistors M3-M6 are in cutoff region. The differential input voltage (VIN-

VREF) is amplified to get differential output voltage (VA-VB). When node voltages of VA 

and VB are pulled down from VDD to VDD-VTN (where VTN is the threshold voltage of 

NMOS transistors), transistors M3, M4 enter saturation region. This corresponds to state 
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2, where transistors M1-M4 are in saturation, M5-M6 are in cutoff and M7 is in triode 

region. In this state, VOP and VON start to fall from VDD. When VOP and VON are pulled to 

a voltage value VDD-|VTP| (where VTP is the threshold voltage of PMOS transistors), 

transistors M5, M6 are turned on and enter saturation. This corresponds to state 3 in 

which transistors M3-M6 are in saturation region, M1, M2 and M7 are in triode region. 

In this state, the regeneration takes place and will pull both the output nodes to opposite 

rails. It can be said that by the end of state 3, the decision would already be taken and 

further analysis is not required. In this comparator, the power is consumed only during 

comparison phase until the output nodes reach the rail, thus providing power efficiency. 

A) Probability of Metastability of comparator (Comparator A) 

When analyzing for the metastability of a comparator, the input voltage VIN is 

considered to be very close to VREF. In such cases, it can be said that the time taken to 

make a final decision is mainly dominated by state 3 compared to other two states. As a 

result, to perform further analysis of metastability, the equations of the comparator in 

state 3 are only considered. Also, the effect of offset is neglected to perform analysis in 

this chapter. 

When analyzing comparator A in state 3, it can be seen that the four transistors 

(M3-M6) form a latch and the small signal output voltage, VOP at time t, can be given as 

(5.3) [2, 14]. 

    1L

t

OP P IN REFV t A V V e


                                            (5.3) 
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where τL1 is the regenerative time constant of the latch, AP is the gain of the comparator, 

VIN and VREF are the input and reference voltages of comparator A respectively. τL1 can 

be given as (5.4), where gmnL1 and gmpL1 are the trans-conductances of M3,M4 and 

M5,M6 respectively in state 3. In this analysis it is assumed that in state 3, the common 

mode voltage of the output of comparator stays constant and the small signal output 

voltage is given by (5.3). It is also assumed that the trans-conductance of transistors in 

saturation region is constant in each state of operation. From (5.3), the output voltage of 

comparator is dependent on input differential voltage, time constant of the latch and gain 

of the comparator. The speed of the comparator can be increased by either increasing the 

gain or differential input to the comparator or by decreasing the time constant of the 

comparator. 

1

1 1

L
L

mnL mpL

C

g g
 


                                                      (5.4) 

In order to calculate the probability of metastability, it is first required to define 

an instant of time at which it needs to be calculated. Let t = 0 be the time instant when 

the clock CLK goes high to operate the comparator in comparison phase. Let t = TP be 

the time instant at which the probability of metastability needs to be evaluated. After 

defining VHMIN and VLMAX from section III and neglecting time spent in states 1 and 2 

compared to that spent in state 3, the region of metastability VM can be obtained for 

comparator A using the definition of metastability provided in Section II. 

The small signal output voltage, VOP can reach either VDD or VSS depending on 

the input differential voltage. If input differential voltage is positive, that is, if VIN is 
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greater than VREF, the small signal output voltage would start from AP*(VIN-VREF) at 

time t = 0 and ultimately reach VDD. In this case, the maximum input voltage above VREF 

that results in an output voltage of VHMIN at time t = TP can be given as VMH in (5.5) 

using equation (5.3). 

1

P

L

T

HMIN

MH REF

P

V
V V e

A




                                                 (5.5) 

Similarly, the minimum input voltage below VREF that results in an output 

voltage of VLMAX at time t = TP can be given as VML in (5.6). 

1

P

L

T

LMAX

ML REF

P

V
V V e

A




                                                 (5.6) 

So, the total region of metastability of comparator A can be given as VM,A in 

equation (5.7). Fig. 5.4 shows output waveforms of comparator A for different input 

voltages. It can be seen that for VIN above VMH or below VML, the comparator is not 

metastable at t = TP. However, for input voltage VIN within VML and VMH, the 

comparator is metastable at t = TP.  

1

,

,

P

L

M A MH ML

T

HMIN LMAX

M A

P

V V V

V V
V e

A




 




                                            (5.7) 

From (5.7), the probability of metastability of comparator A can be estimated by 

(5.8) as PMS,A, where 2VR is the total input range of VIN. 
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1
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2
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L

T

HMIN LMAX

MS A

R P

V V
P e

V A




                                            (5.8) 

t=TP

Time (s)

VIN = VMH

VIN = VLH

t = 0

VIN > VMH

VML < VIN < VMH

VIN < VML

AP(VMH-VREF)

AP(VML-VREF)

0

VHMIN

VLMAX

Voltage (V)

 

Figure 5.4: Plots showing the output voltage of comparator A for different input voltages 

around VREF. Here VMH > VREF > VML. The thick lines correspond to maximum (VMH) 

and minimum (VML) input voltages of comparator A that result in metastable output at t 

= TP. 

 

B) Probability of metastability of a comparator with inverters appended 

(Comparator B) 

One of the techniques used to decrease the probability of metastability in 

comparators is to use inverters at the output of the latch as shown in Fig. 5.5 [5]. In Fig. 

5.5, the comparator in Fig. 5.3 is appended with an inverter on both output nodes. Let the 

new comparator be called Comparator B. The output nodes of this comparator are VOIP 

and VOIN (output nodes of appended inverters). The load capacitance of comparator B is 

given by CL. C1 in Fig. 5.5 is the sum of parasitic capacitance on nodes VON (or VOP) and 

input capacitance of the added inverters. Adding an inverter stage increases the overall 
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gain of comparator B and thus decreases the probability of metastability. The drawback 

with this method is that it adds slightly more power and introduces additional delay due 

to the inverter. The following description provides an analytical approach to determine 

the probability of metastability of comparator B and compare both comparators A and B. 

CLK CLK
M5 M6

P2 P3
CLK

P4
CLK

P5

CLK
M7

VIN VREF
M1 M2

M3 M4
CL

CL

CP CP

VA VB

VON VOPVOIP

VOIN

M8

M10

M9

M11

C1

C1

 

Figure 5.5: Schematic of comparator B 

 

In Fig. 5.5, it is assumed that, the appended inverters are sized such that the trip 

point of inverters (M8-M11) is the same as that of the inverters present in the latch (M3-

M6). It can be mentioned that when VIN is close to VREF the system is metastable and it 

can be assumed that all transistors in the latch (M3-M6) and in the inverters (M8-M11) 

are in saturation region. In this state, the small signal analysis can be performed for the 

above structure and the output voltage in s-domain can be given by (5.9). Equation (5.9) 
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is obtained by cascading a positive pole system (latch) with a negative pole system 

(inverter). 

 
 

2 21 1

IN REFCOMP INV
OIP

L I

V VA A
V s

s s s 




 
                                   (5.9) 

where ACOMP is gain in the latch (M3-M6), AINV is the gain of the appended inverter 

(M9,M11 or M8,M10), 1/τL2 and 1/τ2I are the magnitudes of positive and negative poles 

in the system at nodes VOP (or VON) and VOIP (or VOIN) respectively. The values of AINV, 

τL2 and τ2I can be given as (5.10-5.12).  

mnI mpI

INV

onI opI

g g
A

g g





                                             (5.10) 

1
2

2 2

L

mnL mpL

C

g g
 


                                          (5.11) 

2
L

I

onI opI

C

g g
 


                                           (5.12) 

where gmnI and gmpI are the trans-conductances of the NMOS (M10-M11) and PMOS 

(M8-M9) transistors in the inverter respectively and gonI and gopI are the output 

conductances of NMOS and PMOS transistors in the inverters respectively, gmnL2 and 

gmpL2 are the trans-conductances of NMOS (M3-M4) and PMOS (M5-M6) transistors in 

the latch of comparator B respectively. 
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From (5.9), the small signal output voltage VOIP in time domain can be given as 

(5.13). It can be noted that adding the inverter introduces a finite amount of delay which 

is given by t0INV in (5.13). 

   

0 0

2 2

2 2

2 2

1

1 1

INV INV

L I

t t t t

OIP COMP INV IN REF
I L

L I

e e
V t A A V V

 

 

 

 


 
 
     
   
 

                      (5.13) 

C1 is usually small compared to that of CL as the size of the inverter added to the 

output of latch in comparator B is usually smaller than the size of the digital circuit load 

to the comparator. Comparing τL2 and τ2I, it can be seen that since CL > C1 and (gonI+gopI) 

< (gmnL2+gmpL2), τL2 is very small compared to τ2I. Also, the second term in (5.13) is an 

exponential decay term with a time constant τ2I. As a result, the second term in (5.13) 

can be neglected and the small signal output voltage of comparator B, VOIP at time t can 

be given as (5.14) after neglecting the constant term. 
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                               (5.14) 

Performing analysis similar to the one presented in the previous section and from 

(5.14), the region of metastability of comparator B at time TP can be obtained as VM,B in 

(5.15) 
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                            (5.15) 
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The probability of metastability of comparator B at time t = TP is given as PMS,B 

in (5.16) 

  0

22
,

2

1
2

P INV

L

T t

HMIN LMAX I
MS B

R COMP INV L

V V
P e

V A A






  

  
 

                           (5.16) 

C) Compare Probability of Metastability of comparator A and comparator B  

Using equations (5.8) and (5.16), the probability of metastability of comparator 

A and comparator B is plotted in Fig. 5.6 with respect to the time at which it is 

evaluated, TP. A total of four cases are plotted in which one case corresponds to 

comparator B while the other three cases correspond to comparator A. The values of AP, 

ACOMP and AINV are 6, 6 and 30 respectively; t0INV was 150ps, while τ2I and τL2 are taken 

as 250ps and 58ps respectively. The value of |VHMIN|+|VLMAX| is taken to be 1V. 

 

 

Figure 5.6: Probability of metastability of comparator B (solid line) and comparator A 

(dashed lines) for different values of τL1 
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The solid line in Fig. 5.6 represents the probability of metastability of comparator 

B with above mentioned values for varying TP. The dashed lines in Fig. 5.6 represent the 

probability of metastability of comparator A for three values of τL1 given by 50ps, 80ps 

and 100ps. The value of τL1 can be changed by increasing or decreasing the gmnL1 and 

gmnP1 parameters (by changing the sizes of NMOS and PMOS transistors) as given in 

(5.4) for a given value of load capacitance (CL). From Fig. 5.6, it can be said that, as τL1 

decreases, the probability of metastability also decreases in comparator A.  

Now, comparing comparator A (dashed lines) and comparator B (solid line), two 

cases arise. Case 1 occurs when τL1 < τL2, that is, comparator A is faster than the latch in 

comparator B. In such cases, the probability of metastability is always smaller for 

comparator A as shown in Fig. 5.6. Case 2 occurs when τL1 > τL2, that is, comparator A is 

slower than the latch in comparator B. In such cases, it can be seen that there is a point in 

time (say TP’) until which comparator A has lower value of probability of metastability. 

After that point (TP’) in time, comparator B has lower probability of metastability. This 

phenomenon can be attributed to two factors in comparator B. Due to the delay produced 

by the additional inverter, t0INV, the probability of metastability in comparator B at the 

beginning is more than that of comparator A. However, after some time (TP’), the gain of 

the appended inverter along with the lower value of τL2 would help decrease the 

probability of metastability of comparator B.  

From equations (5.16) and (5.8), the value of TP’ is given by (5.17) and can be 

obtained by equating both PMS,A and PMS,B. 
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                                   (5.17) 

From the above analysis and from Fig. 5.6, it can be said that comparator A can 

be used if τL1 < τL2 or if τL1 > τL2 and TP (time at which the probability of metastability is 

considered) is less than TP’. If τL1 > τL2 and TP is greater than TP’, comparator B can be 

used to obtain lower probability of metastability. 

 

V. PROBABILITY OF METASTABILITY OF SYNCHRONOUS SAR ADC 

WITH AND WITHOUT A METASTABLE DETECTION CIRCUIT 

 

Another technique that is used to decrease the probability of metastability is to 

use metastable detection (MSD) circuit. The metastable detection circuits are used in 

systems that use comparators such as Analog-to-Digital converters. The probability of 

metastability in SAR ADCs with and without using MSD circuit is analyzed below. 

A) SAR ADC without Metastable detection circuit 

Let us consider a synchronous SAR ADC as shown in Fig. 5.7 with input range 

varying from –VR to VR. A track and hold switch is present that samples the input 

voltage while the comparator, SAR logic and DAC perform the successive 

approximation operation to obtain the final digital output code. 

1) SAR ADC Operation 

Let N be the resolution of SAR ADC. φ1 is the timing diagram of the 

sampling clock. Let T be the time period of sampling clock. Each period consists of two 
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phases, one is sampling phase and the other is conversion phase. Let TS be the time 

allocated for sampling phase. In this phase, the analog input is sampled. In comparison 

phase, the digital output corresponding to the sampled input is obtained. Let TD be the 

time period of internal clock φINTERNAL, within which a decision on one bit is made. As a 

result, the total time for comparison phase can be given as N*TD. So, the sampling time 

period, T, can be given as the sum of time spent in sampling phase, TS, and time spent in 

comparison phase, NTD, as shown in equation (5.18). 

T = TS + NTD                                                      (5.18) 

T/H Switch

ϕ1

VIN

SAR LogicDAC

ϕ1

ϕINTERNAL

TCONS

Sampling Phase Conversion Phase

Output

TS

TD

NTD

Comparator

t=0

T

ϕINTERNAL

 

Figure 5.7: Block diagram of a successive approximation register (SAR) ADC with 

timing diagram 

 

Let t = 0 correspond to the time at which the comparison phase starts as 

shown in Fig. 5.7. Using basic binary SAR operation, the decision on MSB (bit 1) is first 

made, then the decision on MSB-1(bit 2) is made and so on. To decide each bit, a total of 
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three operations need to be performed with in time period TD. They are comparator 

decision, DAC settling and SAR logic operations. The time associated with DAC 

settling and SAR logic operation is constant. However, the time associated with 

comparator decision is not constant as the decision time is related to the input 

differential voltage as shown in equation (5.3). So, the maximum time available for 

comparator to make a decision is given as TD-TCONS, where TCONS is the constant time 

allocated for DAC settling and SAR logic operation in determining one bit as shown in 

Fig. 5.7. A SAR ADC can deliver an accurate output if the comparator provides a valid 

output within time TD – TCONS. 

2) Probability of Metastability in SAR ADC 

In SAR ADC, the probability of metastability is given by the regions of 

metastability that is occurred when deciding each bit. The comparators used in SAR 

ADC are similar to the ones discussed in Section IV above. Hence, similar equations are 

used to estimate the probability of metastability in SAR ADCs. 

From (5.7), the region of metastability when the first bit (MSB) is decided is 

given as VM1 as shown in (5.19). This is because there is only one possible reference 

voltage with which the input is compared to determine MSB bit in SAR operation. Here 

τ1 and A are the time constant and gain of comparator in Fig. 5.7 respectively and (TD – 

TCONS) is the total time available for the comparator in Fig. 5.7 to make a valid decision. 

As explained in Section III, VHMIN and VLMAX can be obtained from the digital circuitry 

in SAR logic. 
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To determine the second bit, there are two possible reference voltages 

(VREF/4, 3VREF/4). As a result, the region of metastability for second bit decision is given 

as VM2 and is shown in (5.20). VM2 is two times VM1 as there are two possible reference 

voltages. 
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Similarly, to determine i
th

 bit (bit 1 is MSB and bit N is LSB), there are a 

total of 2
(i-1)

 possible reference voltages. As a result, the region of metastability to 

determine i
th

 bit is given as VMi and is shown in (5.21). 
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So, the total region of metastability for a SAR ADC can be given as VM,ADC 

in equation (5.22). From VM,ADC, the probability of metastability of SAR ADC without a 

metastable detector can be given as PMS,ADC in (5.23). 
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B) SAR ADC with Metastable detection circuit 

Now consider SAR ADC architecture as shown in Fig. 5.8 with input range 

varying from -VR to VR. It can be seen that a metastable detection circuit and an error 

correction block are added to the SAR ADC in Fig. 5.7 and the timing diagram for the 

operation of this new SAR ADC is provided in Fig. 5.8. The functioning of SAR logic, 

DAC and comparator 1 in Fig. 5.8 is similar to the one in Fig. 5.7. As a result, the timing 

diagrams for clocks φ1 and φINTERNAL are the same in both Fig. 5.7 and Fig. 5.8. The 

other timing diagrams of φM and φEC correspond to the metastable detection (MSD) 

circuit and error correction block. 

T/H Switch

ϕ1

VIN

SAR LogicDAC

VHMIN

VLMAX

Error 
Correction

ϕM

ϕEC

ϕEC

Output

VOCOMP

VMS
VOMS1

VOMS2

Comparator 1

Comparator 2

Comparator 3

ϕINTERNAL

 

ϕM

ϕEC

ϕ1

ϕINTERNAL

TCONS

Sampling Phase Conversion Phase

TS

TD

NTD

TD-TSET

TD

t=0  

Figure 5.8: Block diagram of a successive approximation SAR ADC with a 

metastable detection circuit and error correction block. Timing diagram of different 

clocks used is given. 
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1) Operation of the Metastable detection (MSD) circuit 

The metastable detection (MSD) circuit includes a track and hold switch, one 

comparator (comparator 2) with trip voltage VHMIN and another comparator (comparator 

3) with trip voltage VLMAX as shown in Fig. 5.8. The MSD circuit holds the output 

voltage of comparator 1 at a given instant and checks if comparator 1 is metastable or 

not. Ideally, a metastable event is detected if the voltage value on node VMS is between 

VHMIN and VLMAX. If the voltage value on node VMS is not in between VHMIN and VLMAX, 

comparator 1 is not metastable when deciding that particular bit. When φM goes high, 

node VOCOMP is tracked and when φM goes low, the voltage value on node VOCOMP is 

held on node VMS using the track and hold circuit. In the MSD circuit, if the outputs of 

both comparators (comparator 2 and comparator 3) are either logic “0” or logic “1”, a 

metastable event is not obtained. However, if output of comparator 2 is logic “0” and 

output of comparator 3 is logic “1”, a metastable event is said to be detected. 

2) Functioning of Error Correction Block 

The error correction block functions based on the outputs of SAR logic and 

the metastable detection circuit. If MSD circuit does not detect a metastable event, the 

output of error correction block would be the same as the output of SAR logic in Fig. 

5.8. However, if the MSD detects a metastable event, the error correction block produces 

an output code depending on the bit at which the metastable event is detected. For 

example, if the MSD circuit detects a metastable event when deciding the i
th

 bit, the 

error correction block provides an output such that the first (i-1) bits (from bit 1 (MSB) 

to bit (i-1)) are retained from the output of SAR logic, then it fixes the i
th

 bit to 1 and the 
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following bits (bit i+1 to bit N (LSB)) to 0 (similar to MTS algorithm [11]). As a result, 

the metastable event is detected and is corrected in the output of ADC. Clock φEC is used 

to fetch the output of comparators in MSD circuit to perform error correction. 

3) SAR ADC Functionality 

Having described the operation of MSD circuit and error correction, the 

overall functionality of the SAR ADC using a MSD circuit is explained below. 

Once the analog input voltage is sampled and settled by the end of sampling 

phase, the conversion phase starts. Let t = 0 correspond to the time at which the 

conversion phase starts for each sample as shown in Fig. 5.8. For proper operation of the 

DAC and SAR logic, comparator 1 should provide a valid logic output by time t = TD – 

TCONS. This output voltage is held on node VMS using a clock φM with a pulse width of 

TSET and a period of TD. Ideally, the comparators in MSD circuit compare the voltage 

value on node VMS with VHMIN and VLMAX and output accordingly. Both the comparators 

in the metastable detection circuit should provide a valid logic output within time TD – 

TSET. Since the comparators in MSD circuit starts to operate from time t = TD – TCONS, a 

valid output from comparator 2 and comparator 3 should be obtained by time t = TD – 

TCONS + TD – TSET. This is the time when the error correction block fetches the output of 

MSD circuit and performs correction if required and provides the output of SAR ADC.  

As mentioned above if a metastable event is not detected, the SAR logic 

output is considered as the output of ADC and if a metastable event is detected, the error 

correction block corrects the output of SAR logic and provides accurate output of ADC. 

It can be seen that the MSD circuit added in Fig. 5.8 does not fall in the signal path for 
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SAR operation. As a result, the output of SAR ADC in Fig. 5.8 is obtained with latency, 

but the frequency of the sampling clock is still the same as used in Fig. 5.7. Hence, the 

effects of metastability in SAR ADC at a given frequency can be decreased using a 

metastable detection circuit by detecting and correcting a metastable event 

4) Probability of Metastability using Metastable detection circuit 

In the SAR ADC shown in Fig. 5.8, though a MSD circuit is used, there is 

some probability of metastability still present due to the fact that both comparators 

included in the metastable detection circuit are susceptible to metastability. The 

comparator with reference voltage equal to VHMIN (comparator 2) could be metastable if 

voltage held on node VMS is close to VHMIN and similarly the comparator with reference 

voltage equal to VLMAX (comparator 3) could be metastable when voltage held on node 

VMS is close to VLMAX. Hence, it is required to find the probability of metastability of 

SAR ADC when a metastable detection circuit is used. The probability of metastability 

in SAR ADC with metastable detection circuit as shown in Fig. 5.8 is explained below 

using Fig. 5.9. 

The region of metastability of the SAR ADC in Fig. 5.8 when deciding the 

MSB bit (bit 1) is explained in Fig. 5.9. The reference voltage of comparator 1 

considered in Fig. 5.9 is zero (for MSB bit). In this explanation, MSB bit decision is 

chosen for convenience. The same explanation holds good when deciding any bit.  

There are two different graphs present in Fig. 5.9. The graph to the left 

corresponds to the output voltage in comparator 1 with reference voltage, VREF = 0 

(considering MSB bit). The graph to the right (red bold) corresponds to the output 
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voltage of comparator 2 with reference voltage VREF = VHMIN. The output voltage of 

comparator 1is plotted from t = 0 to t = TD – TCONS in the left part of Fig. 5.9. The output 

voltage of comparator 2 is plotted from t = TD – TCONS to t = TD – TCONS + TD – TSET in 

the right part of Fig. 5.9. As mentioned earlier, the output voltage of comparator 2 at t = 

TD – TCONS + TD – TSET is fetched by error correction block. 

t=TD-TCONSt=0 t=TD-TCONS+TD-TSET

0

A1VM11

VM22

VM21

VHMIN

A2(VM21-VHMIN)

A2(VM22-VHMIN)

A1VM12

Time (s)

Voltage (V)

VLMAX

Output voltage of comparator 

1 (blue and black) from t = 0 

to t=TD - TCONS

Output voltage of comparator 

2 (red) from t= TD – TCONS to 

t=TD– TCONS + TD -TSET with 

VREF =VHMIN 

VIN=VM21

VIN=VM22

VMC2

 Figure 5.9: Output voltages of comparator 1 and comparator 2 plotted on the same time 

and voltage axis. Left part is the output voltage of comparator 1 (Blue-dashed curves), 

right part is the output voltage of comparator 2 (red-dashed). VMC2 is the region of 

metastability of comparator 2 around VHMIN. VM11 and VM12 are the maximum and 

minimum input voltages of comparator 1 that result in an output of comparator 1 to fall 

in the range of VMC2, thus causing comparator 2 to be metastable. 

 

First, considering the graph on right side of Fig. 5.9, the region of 

metastability of comparator 2 around VHMIN is obtained. This is shown in Fig. 5.9 as 

(VM21 – VM22) or VMC2 using the blue-dashed curves at time t = TD - TCONS. VMC2 

corresponds to the range of input voltages around VHMIN that results in a metastable 

output for comparator 2 at time t = TD – TCONS + TD – TSET (red curves in Fig. 5.9). The 
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top red-dashed curve is the output of comparator 2 with input voltage VM21, while the 

bottom red curve is the output of comparator 2 with input voltage VM22. A2 is the gain of 

comparator 2 and comparator 3. 

It can be seen from Fig. 5.8 that, the input to comparator 2 is the output of 

comparator 1. As a result, from the range of metastability of comparator 2 (which is 

given as VM21 – VM22), the set of input voltages to comparator 1 that result in an output 

to fall in the range of [VM22 VM21] at t = TD – TCONS can be obtained (by tracing the blue 

dashed lines backwards). In left graph of Fig. 5.9, the top blue-dashed curve is the output 

of comparator 1 with input voltage VM11 (gives output voltage VM21 at t = TD – TCONS) 

and the bottom blue-dashed curve is the output of comparator 1 with input voltage VM12 

(gives output voltage VM22 at t = TD – TCONS). As a result, the range of input values to 

comparator 1 that produce a metastable event in comparator 2 is given by VM11-VM12. A1 

is the gain of comparator 1 in Fig. 5.8. Similarly, the range of input voltages that result 

in comparator 3 to enter metastability can be obtained. The analysis to achieve the 

probability of metastability depending on different comparator parameters is given 

below. 

Considering the same comparator circuit as discussed in Section IV 

(comparator A), the output voltage of comparator 1 in Fig. 5.8, VOCOMP, at time t with 

input VIN and reference voltage, VREF = 0 (considering MSB bit decision), can be given 

as (5.24). Here τ21 is the time constant of comparator 1. 

    21

10
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The voltage on node VOCOMP at time t = TD – TCONS is held on node VMS to 

detect metastable event. As mentioned above, VM11 is the input voltage to comparator 1 

that results in an output voltage VM21 at time t = TD – TCONS. From (5.24), VM21 can be 

given as (5.25). 

  21

21 11 10
D CONST T

M MV V Ae




                                           (5.25) 

 

It is also known that VM21 is the input voltage of comparator 2 that is greater 

than VHMIN and provides an output voltage of comparator 2 equal to VHMIN at time t = TD 

– TCONS + TD – TSET from Fig. 5.9. The output voltage of comparator 2 at t = TD – TCONS 

+ TD – TSET can be given as (5.26) from (5.3). Here τ22 is the time constant of 

comparator 2, TD-TSET is the total time available for comparator 2 to make a decision 

and VOMS1 is the output voltage of comparator 2 in Fig. 5.8. 

 

21 22

1

11 1 2

   or

D CONS D SET

OMS D CONS D SET HMIN

T T T T

HMIN M HMIN

V t T T T T V

V V A e V A e
 

 

    

 
  
 
 

                         (5.26) 

From (5.26), the value of VM11 can be obtained by (5.27). This corresponds to 

the case when comparator 2 outputs logic “1”. 
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                                 (5.27) 

Similarly, considering the other case when comparator 2 would output a logic 

“0” (bottom red dashed curve in the right side plot in Fig. 5.9), the value of input voltage 
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to comparator 1 (VM12) that results in an output VM22 at time t = TD – TCONS can be given 

as (5.28). 
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                               (5.28) 

So, the total region of metastability for the SAR ADC when input to 

comparator 1 is above VREF = 0 is given as VM2H as shown in equation (5.29) 

VM2H = VM11-VM12   or 

 
21 22

2

1 2

D CONS D SETT T T T

LMAX HMIN

M H

V V
V e e

A A

 

 
 

                                (5.29) 

Similarly, the region of metastability for the SAR ADC when input to 

comparator 1 is below VREF = 0 can be given as VM2L in (5.30). In this case, comparator 

3 is subject to metastability. 
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Hence, the total region of metastability of SAR ADC with a metastable 

detection circuit in determining first bit (VREF=0) is given by (5.31) 

VMD1 = VM2H + VM2L    or 
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Similarly, the region of metastability when determining i
th

 bit in Fig. 5.8 can 

be given as (5.32) since there are a total of 2
i-1

 possible reference voltages to compare. 
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The total region of metastability for the SAR ADC can be given as VMD in 

(5.33) 
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From (5.33), the probability of metastability can be given as PMS,D using 

equation (5.34). 
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C) Compare probability of Metastability for both ADCs 

Using equations (5.23) and (5.34), the probability of metastability in both SAR 

ADCs can be compared. Here, both the ADCs are compared for the probability of 

metastability for a given power dissipation. Let 3P be the total power consumed by 

comparators in each SAR ADC. The comparator in Fig. 5.7 can burn a total of 3P power. 

Let us assume that the three comparators in Fig. 5.8 are identical. As a result, τ22 = τ21 

and A1 = A2. So, each comparator in Fig. 5.8 can burn a total of P power. Assuming 

linear increase in speed with power in comparators, the comparator in Fig. 5.7 can be 

assumed to be about 3 times faster than each of the comparators in Fig. 5.8. So, τ22 = 3τ1. 



www.manaraa.com

151 

 

 

Also, the gain in comparator 1 in Fig. 5.8 can be assumed to be equal to the gain in 

comparator in Fig. 5.7 (A = A1 = A2).  

Using above conditions, the probability of metastability of SAR ADC in Fig. 5.7 

can be given as PMS, ADCP and that of SAR ADC in Fig. 5.8 can be given as PMS,DP in 

equations (5.35) and (5.36) respectively.   
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Fig. 5.10 shows the plots of PMS,ADCP and PMS,DP with respect to TD. The value of 

τ22 is 120ps, A2 is 50, TSET is 100ps, N is 12 and TCONS is 500ps. The time period of 

internal clock TD is varied from 600ps to 2ns. From (5.18), it can be said that with 

decrease in TD, the sampling clock period, T, also decreases. This results in increase in 

sampling clock speed. So, Fig. 5.10 shows the probability of metastability of both SAR 

ADCs with respect to increase in clock speed. As TD decreases, the clock speed 

increases. 

From Fig. 5.10, it can be said that, if the power dissipation is same in both the 

ADCs, as frequency of the clock decreases (that is as TD increases), the probability of 

metastability of SAR ADC without using MSD circuit (Fig. 5.7) is better than that of the 

SAR ADC using MSD circuit (Fig. 5.8). This is because, the comparator in Fig. 5.7 is 

about three times faster than that of the comparators in Fig. 5.8 and there is sufficient 
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time available for the comparator in Fig. 5.7 to provide a valid logic output (as TD is 

high). However, as the speed of sampling clock increases (that is as TD decreases), the 

SAR ADC in Fig. 5.8 using a MSD circuit provides better probability of metastability. 

This can be explained as follows. As TD decreases, there is metastability in comparator 

in Fig. 5.7 and comparator 1 in Fig. 5.8. However, due to the presence of the MSD 

circuit and the error correction block in Fig. 5.8, many of the metastable events are 

detected and corrected, thus providing smaller probability of metastability.  

 

Figure 5.10: Probability of metastability of SAR ADC with (dashed, PMS,DP) and 

without (solid, PMS,ADCP) using metastable detection circuit for constant power 

dissipation. 

 

From the above analysis and from Fig. 5.10, it can be said that using MSD circuit 

can decrease the probability of metastability in high speed synchronous SAR ADC 
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VI. CONCLUSION 

A rigorous definition of metastability in comparators was provided along with a 

method to identify the maximum and minimum voltage values that determine valid logic 

levels. The probability of metastability in comparators with and without using inverters 

at the output of latch was analyzed. It was shown that if the time constant of comparator 

A is smaller than that of comparator B, the probability of metastability of comparator A 

is always smaller than that of comparator B. If time constant of comparator B is smaller 

than that of comparator A, there is a time point, TP’, until which comparator A has 

smaller probability of metastability. However, after this time TP’, the probability of 

metastability in comparator B is smaller than that of comparator A. Also, the probability 

of metastability in synchronous Successive Approximation Register ADCs with and 

without using a Metastable Detection circuit was analyzed. It was shown using 

mathematical analysis that as the frequency of clock increases, using MSD circuit 

decreases the probability of metastability in SAR ADCs. 
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CHAPTER 6 

SUMMARY 

 
In this dissertation, the challenges associated with spectral testing of high 

performance ADCs and waveform generators were addressed. Three new methods were 

proposed that relax three of the stringent conditions required for spectral testing using 

standard methods. These stringent conditions are major contributors to the high costs 

associated with spectral testing.  The first method, Fundamental Identification and 

Replacement (FIRE), completely eliminates the requirement of coherent sampling for 

spectral testing. The second method, Fundamental Estimation, Removal and Residue 

Interpolation (FERARI), relaxes the conditions to have precise control over amplitude 

and frequency of the input signal. The method can provide accurate spectral results from 

a non-coherently sampled and clipped data set. The third method simultaneously relaxes 

the conditions of coherent sampling and using a spectrally pure signal source as the input 

to the ADC to perform spectral testing. All of these methods decrease the test cost by 

enabling a low-cost, low-end measurement setup to test high performance ADCs. 

Furthermore, the methods can be used for BIST applications where high-end test 

circuitry cannot be practically designed for inclusion on-chip. Efficiency and robustness 

of the three proposed methods of testing were verified by using an ADC as the Device 

under Test. The proposed methods can also be used to test spectral characteristics of 

high performance waveform generators. 

Finally, an analysis of the probability of metastability in comparators and SAR 

ADCs was presented. It was shown using this analysis that as the clock frequency of a 
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SAR ADC increases, it is favorable to use metastability  detection circuit to decrease the 

probability of metastability. 
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APPENDIX  

EQUATIONS TO OBTAIN THE JACOBEAN MATRIX IN 

CHAPTER 4 (4.33) 

 
The equations to obtain the Jacobean matrix, Jb, in equation (4.36) are given in 

this appendix. It can be seen from equation (4.33) that for a given index k, if k is odd 

integer, fk is obtained from the real part of Xg,k (which is given as grk). Similarly, if k is 

an even integer, fk is obtained from the imaginary part of Xg,k (which is given as gik). So, 

to obtain expressions for all the 6H rows in (4.34), it is sufficient to obtain the partial 

derivatives of grk and gik (for generalized k) with respect to the parameters in matrix γ. 

For odd subscripts of f (or odd values of index k), the partial derivatives of fk (grk) 

with respect to A1, δ, ϕ, βh, αh are provided below as (A.1 – A.5). (Here h varies from 2 

to H). 

   

 

 

   

int

int

1 1

cot

sin 2 sin1

cot4

2 cos cos 2

k rk

J k

M
f g

J k
A A

M

 

  
 

  

    
   
   

        
              

      

                (A.1) 

   

 

 

    

int

int

cot

cos cos 21

cot4

2 sin 2 sin

k rk

h h

hJ h k

M
h h hf g

hJ h k

M

h h h

 

  
 

 

  

      
     
     

          
                    

        

      (A.2) 



www.manaraa.com

159 

 

 

   

 

 

    

int

1
int

cot

sin 2 sin1

cot4

2 cos cos 2

rk

h h

hJ h k

M
h h hgf

hJ h k

M

h h h

 

  
 

 

  

      
     
     

         
                    

        

      (A.3) 

   

 

 

    

   

 

 

int

1
int

int

int

cot

cos 2 cos

cot4

2 sin 2 sin

cot

sin 2 sin

cot4

              

k rk

h

J k

M
f g A

J k

M

hJ h k

M
h h h h

hJ h k

M

 

  
 

 

  

 

  
 

    
   
   

        
              

    

  
 
 

   
  

 
 


    

   

 

 

    

int

int

2 cos 2 cos

cot

cos 2 cos

cot4

2 sin 2 sin

h

h h h h

hJ h k

M
h h h h

hJ h k

M

h h h h

  

 

  
 

  

   
   
   
   
   

   
   

      

     
   
   

      
              

    

2

H

h

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 



 (A.4) 



www.manaraa.com

160 

 

 

   

 

 

  

 

 

 
 

int2

int2

1

int

int

cos

sin 2 sin

cos

4 sin 2
4

cot

cos 2 2

cot

k rk

J k
ec

M

MJ k
ec

M

f g A

J k

M

J k

M

 


  

 

  
 

 

  
 

    
   

    
        

            
   

  
    

   
  

     
       

   

   

 

 

  

   

 

 

int2

int2

int

int

cos

cos cos 2

cos

4 cos 2
4

cot

2 sin 2

cot

     

h

hJ h k
ec

M h
h h h

MhJ h k
ec

M

h h h

hJ h k

M
h h h

hJ h k

 


  

 


  

 

  
 














    
   

    
        

            
   

  
 
 

   
 





   

 

 

  

int2

int2

cos

sin 2 sin

cos

4 sin 2
4

2

h

M

hJ h k
ec

M h
h h h

MhJ h k
ec

M

h h h

 


  

 


  

 
 
 
 
 
 
 
 
 
 

   
   
   
               

    
   

    
        

            
    

    

 

 

2

int

int

cot

cos 2

cot

H

h

hJ h k

M
h h h

hJ h k

M

 

  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

  
  

      
     
                            



(A.5) 
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For even subscripts of f (or even values of index k), the partial derivatives of fk 

(gik) with respect to A1, δ, ϕ, βh, αh are provided below as (A.6 – A.10). (Here h varies 

from 2 to H). 
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

(A.9) 
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

(A.10) 

Using the above equations for the values of k’s in kSet (4.32) the Jacobean 

matrix, Jb, can be obtained. 
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